References

  1. N. Sahiner, Hydrogels of versatile size and architecture for effective environmental applications, Turkish J. Chem., 32 (2008) 113–123.
  2. R.S. Dubey, R. Xavier, Study on removal of toxic metals using various adsorbents from aqueous environment: a review, Scinzer J. Eng., 1 (2015) 30–36.
  3. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  4. A.T. Paulino, F.A.S. Minasse, M.R. Guilherme, A.V. Reis, E.C. Muniz, J. Nozaki, Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters, J. Colloid Interface Sci., 301 (2006) 479–487.
  5. C.E. Borba, R. Guirardello, E.A. Silva, M.T. Veit, C.R.G. Tavares, Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves, Biochem. Eng. J., 30 (2006) 184–191.
  6. E. Kavitha, M.P. Rajesh, S. Prabhakar, A. Sowmya, M.A. Raqeeb, S. Sriram, P. Jain, Size enhanced ultrafiltration – a novel hybrid membrane process for the removal and recovery of heavy metal contaminants, Res. J. Pharm. Biol. Chem. Sci., 8 (2017) 191–200.
  7. World Health Organization, Guidelines for Drinking-Water Quality: Recommendations-Addendum, 3rd edn., 2008.
  8. O. Keskikan, M.Z.L. Goksu, A. Yuceer, M. Basibuyuk, C.F. Forster, Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum), Process Biochem., 39 (2003) 179–183.
  9. R. Molinari, T. Poerio, P. Argurio, Selective separation of copper(II) and nickel (II) from aqueous media using the complexation ultrafiltration process, Chemosphere, 70 (2008) 341–348.
  10. M.A. Barakat, E. Schmidt, Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater, Desalination, 256 (2010) 90–93.
  11. I. Korus, K. Loska, Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration, Desalination, 247 (2009) 390–395.
  12. R. Camarilloa, J. Llanos, L. García-Fernández, Á. Pérez, P. Cañizares, Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition, Sep. Purif. Technol., 70 (2009) 320–328.
  13. J. Shao, S. Qin, J. Davidson, W. Li, Y. He, H.S. Zhou, Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine, J. Hazard. Mater., 244–245 (2013) 472–477.
  14. S. Petrove, V. Nenov, Removal and recovery of copper from wastewater by a complexation-ultrafiltration process, Desalination, 162 (2004) 201–209.
  15. R. Molinari, P. Argurio, T. Poerio, G. Gullone, Selective separation of copper(II) and nickel(II) from aqueous systems by polymer assisted ultrafiltration, Desalination, 200 (2006) 728–730.
  16. A.F. El-Kafrawy, S.M. El-Saeed, R.K. Farag, H. Al-Aidy El-Saied, M.E.-S. Abdel-Raouf, Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution, Egypt. J. Petrol., 26 (2017) 23–32.
  17. S. Berto, M.C. Bruzzoniti, R. Cavalli, D. Perrachon, E. Prenesti, C. Sarzanini, F. Trotta, W. Tumiatti, Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention, J. Inclusion Phenom. Macrocyclic Chem., 57 (2007) 631–636.
  18. E.M. Martin Del Valle, Cyclodextrins and their use: a review, Process Biochem., 39 (2004) 1033–1046.
  19. D. Zhao, L. Zhao, C.-S. Zhu, W.-Q. Huang, J.-L. Hu, Waterinsoluble β-cyclodextrin polymer cross linked by citric acid: synthesis and adsorption properties toward phenol and methylene blue, J. Inclusion Phenom. Macrocyclic Chem., 63 (2009) 195–200.
  20. E. Norkus, Metal ion complexes with native cyclodextrins. An overview, J. Inclusion Phenom. Macrocyclic Chem., 65 (2009) 237–248.
  21. M. Fernandez, M. Villalonga, A. Fragoso, M. Caob, R. Villalonga, α-Chymotrypsin stabilization by chemical conjugation with O-carboxymethyl-poly-β-cyclodextrin, J. Process Biochem., 39 (2004) 535–539.
  22. M. AbuZayed, S. Badruddoza, B. Zayed, W. Tay, H. Kus, S. Mohammad, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater, J. Carbohydr. Polym., 91 (2013) 322–332.
  23. S. Chakraborty, J. Dasgupta, U. Farooq, J. Sikder, E. Drioli, S. Curcio, Experimental analysis, modeling and optimization of chromium(VI) removal from aqueous solutions by polymerenhanced ultrafiltration, J. Membr. Sci., 456 (2014) 139–154.
  24. C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, 298 (2007) 56–70.
  25. J. Landaburu-Aguirre, E. Pongrácz, P. Perämäki, R.L. Keiski, Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimization, J. Hazard. Mater., 180 (2010) 524–534.
  26. B. Rabadiya, V. Thakkar, P. Rabadiya, Drug-excipients interaction and solubility enhancement study of simvastatin, Int. J. Pharm. Res. Bio-Sci., 2 (2013) 168–185.
  27. N.A.E. Emara, S.A. Elfeky, R.M. Amin, Antibacterial activity of magnetic nanoparticles synthesized from recycling of steel industry wastes, Int. J. Eng. Sci. Comp., 6 (2016) 8640–8648.