References
- A. Chowdhury, M.K. Jha, V.M. Chowdary, B.C. Mal, Integrated
remote sensing and GIS based approach for assessing
groundwater potential in West Medinipur district, West Bengal,
India, Int. J. Remote Sens., 30 (2009) 231–250.
- D. Oikonomidis, S. Dimogianni, N. Kazakis, K. Voudouris,
A GIS/remote sensing-based methodology for groundwater
potentiality assessment in Tirnavos area, Greece, J. Hydrol., 525
(2015) 197–208.
- N. Thilagavathi, T. Subramani, M. Suresh, D. Karunanidhi,
Mapping of ground water potential zones in Salem Chalk Hills,
Tamil Nadu, India using remote sensing and GIS techniques,
Environ. Monit. Assess., 187 (2015) 164.
- A.Y. Murat, Ozgur Kisi, Estimation of dissolved oxygen by
using neural networks and neuro fuzzy computing techniques,
KSCE J. Civil Eng., 21 (2017) 1631–1639.
- E. Yel, S. Yalpir, Prediction of primary treatment effluent
parameters by fuzzy inference system (FIS) approach, Procedia
Comput. Sci., 3 (2011) 659–665.
- H.N.H. Zen, L.W. Trimartanti, Z. Abidin, A.M. Abadi,
Determining hydrocarbon prospective zone using the
combination of qualitative analysis and fuzzy logic method,
J. Syst. Sci. Syst. Eng., 26 (2017) 463–474.
- Zh. Muka, E. Cenaj, R. Dervis, Modeling the amount of rainfall
using fuzzy logic, Int. J. Innov. Sci. Eng. Technol., 4 (2017)
207–210.
- A. Akgun, E.A. Sezer, H.A. Nefeslioglu, C. Gokceoglu, B.
Pradhan, An easy-to-use MATLAB program (MamLand) for the
assessment of landslide susceptibility using a Mamdani fuzzy
algorithm, Comput. Geosci., 38 (2012) 23–34.
- A. Porwal, R.D. Das, B. Chaudhary, I. Gonzalez-Alvarez, O.
Kreuzer, Fuzzy inference systems for prospectivity modeling
of mineral systems and a case-study for prospectivity mapping
of surficial Uranium in Yeelirrie Area, Western Australia, Ore
Geol. Rev., 71 (2015) 839–852.
- N. Alavi, V. Nozari, S.M. Mazloumzadeh, H. Nezamabadipour,
Irrigation water quality evaluation using adaptive
networkbased fuzzy inference system, Paddy Water Environ.,
8 (2010) 259–266.
- R. Mirabbasi, S.M. Mazloumzadeh, M.B. Rahnama, Evaluation
of irrigation water quality using fuzzy logic, Res. J. Environ.
Sci., 2 (2008) 340–352.
- E. Cox, Fuzzy Fundamentals, IEEE Spect., 29 (1992) 58–61.
- T.J. Ross, Fuzzy Logic with Engineering Applications, John
Wiley and Sons, 2010.
- T. Takagi, M. Sugeno, Fuzzy identification of systems and its
applications to modeling and control, IEEE Trans. Syst. Man
Cybern., 15 (1985) 116–132.
- A. Zaher, Y. Ngoran, F. Thiery, S. Grieu, A. Traore, Fuzzy
rule-based model for optimum orientation of solar panels
using satellite image processing, J. Phys. Conf., 783 (2017)
1–11.
- K. Kapil, Shikhar Deep, G.K. Surindra Suthar, M.G. Dastidar,
T.R. Sreekrishnan, Application of fuzzy inference system
(FIS) coupled with Mamdani’s method in modelling and
optimization of process parameters for biotreatment of real
textile wastewater, Desal. Wat. Treat., 57 (2015) 9690–9697.
- H.R. Pourghasemi, M. Beheshtirad, B. Pradhan, A comparative
assessment of prediction capabilities of modified analytical
hierarchy process (M-AHP) and Mamdani fuzzy logic models
using Netcad-GIS for forest fire susceptibility mapping,
Geomat. Nat. Hazards Risk, 7 (2016) 861–885.
- A. Beycioglu, A. Gultekin, H.Y. Aruntas, O. Gencel, M.
Dobiszewska, W. Brostow, Mechanical properties of blended
cements at elevated temperatures predicted using a fuzzy logic
model, Comput. Concr., 20 (2017) 247–255.
- H. Naderpour, S.A. Alavi, Application of Fuzzy Logic in
Reinforced Concrete Structures, Proc. 4th International
Conference on Soft Computing Technology in Civil, Structural
and Environmental Engineering, Civil-Comp Press, 2015.
- A. Mojtaba, Optimized Mamdani fuzzy models for predicting
the strength of intact rocks and anisotropic rock masses, J. Rock
Mech. Geotech. Eng., 8 (2016) 218–224.
- C. Gokceoglua, K. Zorlu, A fuzzy model to predict the uniaxial
compressive strength and the modulus of elasticity of a
problematic rock, Eng. Appl. Art. Int., 17 (2009) 61–72.
- K. Karimpour, R. Zarghami, M.A. Moosavian, H. Bahmanyar,
New fuzzy model for risk assessment based on different types
of consequences, Oil Gas Sci. Technol., 71 (2016) 1–15.
- P. Mahalakshmi, K. Ganesan, Mamdani fuzzy rule based model
to classify sites for aquaculture development, Indian J. Fish., 62
(2015) 110–115.
- G.E. Meyer, Digital camera operation and fuzzy logic
classification of uniform plant, soil, and residue color images,
Appl. Eng. Agric., 20 (2004) 519–529.
- K. Chao, Y. Chen, R.H. Early, B. Park, Color image classification
systems for poultry viscera inspection, Appl. Eng. Agric., 15
(1999) 363–369.
- V. Kansal, A. Kaur, Comparison of Mamdani-type and Sugeno
type FIS for water flow rate control in a Rawmill, Int. J. Sci. Eng.
Res., 4 (2013) 2580–2584.
- N. Tremblay, M.Y. Bouroubi, B. Panneton, S. Guillaume, P.
Vigneault, C. Belec, Fuzzy logic to combine soil and crop
growth information for estimating optimum N rate for corn,
EFITA Conference, Vol. 9, 2009, pp. 397–404.
- A. Xing Zhu, Feng Qi, Amanda Moore, James. E. Burt, Prediction
of soil properties using membership values, Geoderma, 158
(2010) 199–206.
- N. Duru, F. Dokmen, M.M. Canbay, C. Kurtulus, Soil
productivity analysis based on a fuzzy logic system, J. Sci. Food
Agric., 90 (2010) 2220–2227.
- E. Ilbahar, A. Karaşan, S. Cebi, C. Kahraman, A novel approach
to risk assessment for occupational health and safety using
Pythagorean fuzzy AHP & fuzzy inference system, Safety Sci.,
103 (2018) 124–136.
- M. Blej, M. Azizi, Comparison of Mamdani-type and Sugenotype
fuzzy inference systems for fuzzy real time scheduling, Int.
J. App. Eng. Res., 11 (2016) 11071–11075.
- M. Kevin, Passino, S. Yurkovich, Fuzzy Control, Addison
Wesley Longman, C.A. Menlo Park, 1998.
- L.A. Zadeh, Fuzzy sets, information and control, J. Symbolic
Logic, 8 (1965) 338–353.
- L. Zhang, B. Zhang, The structure analysis of fuzzy sets, Int. J.
Approx. Reason., 40 (2005) 92–108.
- J. Wang, D. Ding, O. Liu, M. Li, A synthetic method for
knowledge management performance evaluation based on
triangular fuzzy number and group support systems, Appl.
Soft Comput., 39 (2016) 11–20.
- A.D. Sheena, M. Ramalingam, B. Anuradha, A Comprehensive
study on fuzzy inference system and its application in the field
of engineering, Int. J. Eng. Trends Tech., 54 (2017) 36–40.
- E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis
with a fuzzy logic controller, Int. J. Man Mach. Stud., 7 (1975)
1–13.