References

  1. M. Ning, Choice and excitation mechanism for technical innovation in resource-conserving and environment-friendly society, China Popul. Res. Environ., 18 (2008) 134–138.
  2. L. Su, S.R. Swanson, S. Chin, Reputation and intentions: the role of satisfaction, identification, and commitment, J. Bus. Res., 69 (2016) 3261–3269.
  3. G. Yuksek, D.O. Tas, E.U. Cokgor, Effect of eco-friendly production technologies on wastewater characterization and treatment plant performance, Desal. Wat. Treat., 57 (2016) 1–10.
  4. J.A. Siles, A. Chica, M.A. Martín, Study of the anaerobic digestion process of wastewater derived from the pressing of orange rind, Tecn. Y. Cien. Del Agua., 291 (2007) 44–60.
  5. Q. Cheng, Z. Chen, F. Deng, Kinetic evaluation on the degradation process of anaerobic digestion fed with piggery wastewater at different OLRs, Biochem. Eng. J., 113 (2016) 123–132.
  6. Y.B. Şebnem, H. Selim, A fuzzy multi-objective linear programming model for design and management of anaerobic digestion based bioenergy supply chains, Energy, 74 (2014) 928–940.
  7. A.M. Enitan, J. Adeyemo, F.M. Swalaha, Optimization of biogas generation using anaerobic digestion models and computational intelligence approaches, Rev. Chem. Eng., 33 (2017) 309–335.
  8. J. Lin, J. Zuo, X. Chen, Intelligent control system for high–solid anaerobic digestion process, J. TJ. Univ., 40 (2012) 122–126.
  9. K.J. Gurubel, F. Ornelas-Tellez, E.N. Sanchez, Hybrid intelligent inverse optimal control for methane production in an anaerobic process, Chem. Biochem. Eng. Q., 27 (2013) 197–210.
  10. D. Guclu, N. Yılmaz, U.G. Ozkan-Yucel, Application of neural network prediction model to full-scale anaerobic sludge digestion, J. Chem. Technol. Biotechnol., 86 (2011) 691–698.
  11. T.Y. Pai, T.J. Wan, S.T. Hsu, T.C. Chang, Y.P. Tsai, C.Y. Lin, H.C. Su, L.F. Yu, Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent, Comput. Chem. Eng., 33 (2009) 1272–1278.
  12. U. Tezel, J.A. Pierson, S.G. Pavlostathis, Effect of polyelectrolytes and quaternary ammonium compounds on the anaerobic biological treatment of poultry processing wastewater, Water Res., 41 (2007) 1334.
  13. L. Hnilica, J. Fryč, B. Groda, Analysis of the composition and formation of biogas produced during the processing of biological waste by anaerobic digestion technologies, Acta Univ. Agric. Silvic. Mendelianae Brunensis, 58 (2010) 171–178.
  14. A.K. Jha, J.Z .Li, L. Nies, Research advances in dry anaerobic digestion process of solid organic wastes, Afr. J. Biotechnol., 65 (2011) 14242–14253.
  15. B. Demirel, P. Scherer, Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process, Biomass Bioenergy, 32 (2008) 203–209.
  16. C. Bryant, The Biology of Respiration, Edward Arnold, London, 1980.
  17. C.X. Wang, H.Y. Liu, Influence of water-drainage works on landscape pattern in Sanjiang Plain. J. Irrig. Drain. Eng., 27 (2008) 103–107.
  18. A. Zhang, H. Cheng, Z. Li, The present situation and progress of study of solid-state anaerobic digestion of organic solid wastes, Res. Environ. Sci., 15 (2002) 52–54.
  19. D.J. Batstone, J. Keller, I. Angelidaki, The IWA anaerobic digestion model no. 1 (ADM1), Water Sci. Technol., 45 (2002) 65–73.
  20. A. Mukherjee, S. Schmauder, H.M. Ru, Artificial neural networks for the prediction of mechanical behavior of metal matrix composites, Acta Metall. Mater., 43 (1995) 4083–4091.
  21. D. Rumelhart, J. Mcclelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press, 1986.
  22. J. Wang, P. Shi, P. Jiang, Application of BP neural network algorithm in traditional hydrological model for flood forecasting, Water, 9 (2017) 48–49.
  23. W. Paszkowicz, Genetic algorithms, a nature-inspired tool: survey of applications in materials science and related fields,. Mater. Manuf. Processes, 24 (2009) 174–197.