References
- M. Ning, Choice and excitation mechanism for technical
innovation in resource-conserving and environment-friendly
society, China Popul. Res. Environ., 18 (2008) 134–138.
- L. Su, S.R. Swanson, S. Chin, Reputation and intentions: the
role of satisfaction, identification, and commitment, J. Bus. Res.,
69 (2016) 3261–3269.
- G. Yuksek, D.O. Tas, E.U. Cokgor, Effect of eco-friendly
production technologies on wastewater characterization and
treatment plant performance, Desal. Wat. Treat., 57 (2016) 1–10.
- J.A. Siles, A. Chica, M.A. Martín, Study of the anaerobic
digestion process of wastewater derived from the pressing of
orange rind, Tecn. Y. Cien. Del Agua., 291 (2007) 44–60.
- Q. Cheng, Z. Chen, F. Deng, Kinetic evaluation on the
degradation process of anaerobic digestion fed with piggery
wastewater at different OLRs, Biochem. Eng. J., 113 (2016)
123–132.
- Y.B. Şebnem, H. Selim, A fuzzy multi-objective linear
programming model for design and management of anaerobic
digestion based bioenergy supply chains, Energy, 74 (2014)
928–940.
- A.M. Enitan, J. Adeyemo, F.M. Swalaha, Optimization of biogas
generation using anaerobic digestion models and computational
intelligence approaches, Rev. Chem. Eng., 33 (2017) 309–335.
- J. Lin, J. Zuo, X. Chen, Intelligent control system for high–solid
anaerobic digestion process, J. TJ. Univ., 40 (2012) 122–126.
- K.J. Gurubel, F. Ornelas-Tellez, E.N. Sanchez, Hybrid intelligent
inverse optimal control for methane production in an anaerobic
process, Chem. Biochem. Eng. Q., 27 (2013) 197–210.
- D. Guclu, N. Yılmaz, U.G. Ozkan-Yucel, Application of neural
network prediction model to full-scale anaerobic sludge
digestion, J. Chem. Technol. Biotechnol., 86 (2011) 691–698.
- T.Y. Pai, T.J. Wan, S.T. Hsu, T.C. Chang, Y.P. Tsai, C.Y. Lin, H.C.
Su, L.F. Yu, Using fuzzy inference system to improve neural
network for predicting hospital wastewater treatment plant
effluent, Comput. Chem. Eng., 33 (2009) 1272–1278.
- U. Tezel, J.A. Pierson, S.G. Pavlostathis, Effect of polyelectrolytes
and quaternary ammonium compounds on the anaerobic
biological treatment of poultry processing wastewater, Water
Res., 41 (2007) 1334.
- L. Hnilica, J. Fryč, B. Groda, Analysis of the composition
and formation of biogas produced during the processing of
biological waste by anaerobic digestion technologies, Acta
Univ. Agric. Silvic. Mendelianae Brunensis, 58 (2010) 171–178.
- A.K. Jha, J.Z .Li, L. Nies, Research advances in dry anaerobic
digestion process of solid organic wastes, Afr. J. Biotechnol.,
65 (2011) 14242–14253.
- B. Demirel, P. Scherer, Production of methane from sugar beet
silage without manure addition by a single-stage anaerobic
digestion process, Biomass Bioenergy, 32 (2008) 203–209.
- C. Bryant, The Biology of Respiration, Edward Arnold, London,
1980.
- C.X. Wang, H.Y. Liu, Influence of water-drainage works
on landscape pattern in Sanjiang Plain. J. Irrig. Drain. Eng.,
27 (2008) 103–107.
- A. Zhang, H. Cheng, Z. Li, The present situation and progress of
study of solid-state anaerobic digestion of organic solid wastes,
Res. Environ. Sci., 15 (2002) 52–54.
- D.J. Batstone, J. Keller, I. Angelidaki, The IWA anaerobic
digestion model no. 1 (ADM1), Water Sci. Technol., 45 (2002)
65–73.
- A. Mukherjee, S. Schmauder, H.M. Ru, Artificial neural
networks for the prediction of mechanical behavior of metal
matrix composites, Acta Metall. Mater., 43 (1995) 4083–4091.
- D. Rumelhart, J. Mcclelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, MIT Press,
1986.
- J. Wang, P. Shi, P. Jiang, Application of BP neural network
algorithm in traditional hydrological model for flood
forecasting, Water, 9 (2017) 48–49.
- W. Paszkowicz, Genetic algorithms, a nature-inspired tool:
survey of applications in materials science and related fields,.
Mater. Manuf. Processes, 24 (2009) 174–197.