References
- M.G. Ahunbay, S.B. Tantekin-Ersolmaz, W.B. Krantz, Energy
optimization of a multistage reverse osmosis process for
seawater desalination, Desalination, 429 (2018) 1–11.
- UNICEF and World Health Organization, Progress on Drinking
Water, Sanitation and Hygiene, 2017.
- WHO and UNICEF, Safely Managed Drinking Water - Thematic
Report on Drinking Water, 2017.
- A. Elmekawy, H.M. Hegab, D. Pant, The near-future integration
of microbial desalination cells with reverse osmosis technology,
Energy Environ. Sci., 7 (2014) 3921–3933.
- M. Heibati, C.A. Stedmon, K. Stenroth, S. Rauch, J. Toljander,
M. Säve-Söderbergh, K.R. Murphy, Assessment of drinking
water quality at the tap using fluorescence spectroscopy, Water
Res., 125 (2017) 1–10.
- V. Martínez-Alvarez, B. Martin-Gorriz, M. Soto-García,
Seawater desalination for crop irrigation - a review of current
experiences and revealed key issues, Desalination, 381 (2016)
58–70.
- G. Migliorini, E. Luzzo, Seawater reverse osmosis plant using
the pressure exchanger for energy recovery: a calculation
model, Desalination, 165 (2004) 289–298.
- P. Simon, Tapped Out: The Coming World Crisis in Water and
What We Can Do About It, Welcome Rain Publisher, New York,
1998.
- S. Lee, S. Myung, J. Hong, D. Har, Reverse osmosis desalination
process optimized for maximum permeate production with
renewable energy, Desalination, 398 (2016) 133–143.
- F.S. Pinto, R.C. Marques, Desalination projects economic
feasibility: a standardization of cost determinants, Renew.
Sustain. Energy Rev., 78 (2017) 904–915.
- I. Alatiqi, H. Ettouney, H. El-Dessouky, Process control in water
desalination industry: an overview, Desalination, 126 (1999)
15–32.
- L.O. Villacorte, S.A.A. Tabatabai, D.M. Anderson, G.L. Amy,
J.C. Schippers, M.D. Kennedy, Seawater reverse osmosis
desalination and (harmful) algal blooms, Desalination, 360
(2015) 61–80.
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment
nexus underpinning future desalination
sustainability, Desalination, 413 (2017) 52–64.
- M. Balaban, Desalination 1966-2016, The International Journal
of Water Desalting and Purification, The origins, evolution
and role of the Desalination Journal, Desalination, 401 (20167)
xvi–xx.
- L. García-Rodríguez, Seawater desalination driven by
renewable energies: a review, Desalination, 143 (2002) 103–113.
- Y. Zhang, M. Sivakumar, S. Yang, K. Enever, M. Ramezanianpour,
Application of solar energy in water treatment processes: a
review, Desalination, 428 (2018) 116–145.
- N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and
evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability,
Desalination, 309 (2013) 197–207.
- G. Comodi, L. Cioccolanti, S. Palpacelli, A. Tazioli, T. Nanni,
Distributed generation and water production: a study for a
region in central Italy, Desal. Wat. Treat., 31 (2011) 218–225.
- I.G. Wenten, Khoiruddin, Reverse osmosis applications:
prospect and challenges, Desalination, 391 (2016) 112–125.
- K. Park, D.Y. Kim, D.R. Yang, Cost-based feasibility study
and sensitivity analysis of a new draw solution assisted
reverse osmosis (DSARO) process for seawater desalination,
Desalination, 422 (2017) 182–193.
- J. Imbrogno, J.J. Keating, J. Kilduff, G. Belfort, Critical aspects
of RO desalination: a combination strategy, Desalination, 401
(2017) 68–87.
- L.O. Villacorte, S.A.A. Tabatabai, N. Dhakal, G. Amy, J.C.
Schippers, M.D. Kennedy, Algal blooms: an emerging threat
to seawater reverse osmosis desalination, Desal. Wat. Treat., 55
(2015) 2601–2611.
- Z. Ge, C. Yang, Y. Liu, X. Du, L. Yang, Y. Yang, Analysis of plate
multi-effect distillation system coupled with thermal power
generating unit, Appl. Therm. Eng., 67 (2014) 35–42.
- P.K. Sen, P.V. Sen, A. Mudgal, S.N. Singh, S.K. Vyas, P. Davies,
A small scale multi-effect distillation (MED) unit for rural
micro enterprises: Part I-design and fabrication, Desalination,
279 (2011) 15–26.
- C.S. Bandi, R. Uppaluri, A. Kumar, Global optimization of MSF
seawater desalination processes, Desalination, 394 (2016) 30–43.
- J. Xu, Y.B. Singh, G.L. Amy, N. Ghaffour, Effect of operating
parameters and membrane characteristics on air gap membrane
distillation performance for the treatment of highly saline
water, J. Membr. Sci., 512 (2016) 73–82.
- F. Mahmoudi, G. Moazami Goodarzi, S. Dehghani, A.
Akbarzadeh, Experimental and theoretical study of a lab scale
permeate gap membrane distillation setup for desalination,
Desalination, 419 (2017) 197–210.
- B. Kim, G. Gwak, S. Hong, Review on methodology for
determining forward osmosis (FO) membrane characteristics:
water permeability (A), solute permeability (B), and structural
parameter (S), Desalination, 422 (2017) 5–16.
- Y. Mei, C.Y. Tang, Recent developments and future perspectives
of reverse electrodialysis technology: a review, Desalination,
425 (2017) 156–174.
- P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends
in membranes and membrane processes for desalination,
Desalination, 391 (2016) 43–60.
- I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation
of conventional multi-effect evaporation desalination processes,
Appl. Therm. Eng., 73 (2014) 1194–1203.
- I.S. Al-Mutaz, I. Wazeer, Optimization of location of thermocompressor
suction in MED-TVC desalination plants, Desal.
Wat. Treat., 57 (2016) 26562–26576.
- Y. Zhang, Y. Peng, S. Ji, J. Qi, S. Wang, Numerical modeling and
economic evaluation of two multi-effect vacuum membrane
distillation (ME-VMD) processes, Desalination, 419 (2017)
39–48.
- K.A. Khalid, M.A. Antar, A. Khalifa, O.A. Hamed, Allocation of
thermal vapor compressor in multi effect desalination systems
with different feed configurations, Desalination, 426 (2018)
164–173.
- M.A. Jamil, S.M. Zubair, Effect of feed flow arrangement
and number of evaporators on the performance of multieffect
mechanical vapor compression desalination systems,
Desalination, 429 (2018) 76–87.
- P. Wang, Y. Cui, Q. Ge, T. Fern Tew, T.S. Chung, Evaluation
of hydroacid complex in the forward osmosis-membrane
distillation (FO-MD) system for desalination, J. Membr. Sci., 494
(2015) 1–7.
- G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares, T. Missimer,
S. Lattemann, Membrane-based seawater desalination: Present
and future prospects, Desalination, 401 (2017) 16–21.
- W.S. McCulloch, W. Pitts, A logical calculus of the ideas
immanent in nervous activity, Bull. Math. Biophys., 5 (1943)
115–137.
- D.O. Hebb, The Organization of Behaviour: A
Neuropsychological Theory, John Wiley & Sons Publisher, New
York, 1949.
- F. Rosenblatt, Principles of Neurodynamics, Perceptrons and
the Theory of Brain Mechanisms, Spartan Books, 1962.
- J.J. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proc., Nat. Acad.
Sci., 79 (1982) 2554–2558.
- C.M. Bürger, O. Kolditz, Progress Report on Trend Analysis
Methods, Tools and Data Preparation (in Particular Artificial
neural Networks (ANN)), University of Tübingen, Center for
Applied Geoscience, 2005.
- M.E. El-Hawary, Artificial neural networks and possible
applications to desalination, Desalination, 92 (1993) 125–147.
- M.M. Jafar, A. Zilouchian, Adaptive receptive fields for radial
basis functions, Desalination, 135 (2001) 83–91.
- Z.V.P. Murthy, M.M. Vora, Prediction of reverse osmosis
performance using artificial neural network, Indian J. Chem.
Technol., 11 (2004) 108–115.
- A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination
unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
- D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen,
Neural network approach for modeling the performance of
reverse osmosis membrane desalting, J. Membr. Sci., 326 (2009)
408–419.
- Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim,
Artificial neural network model for optimizing operation of a
seawater reverse osmosis desalination plant, Desalination, 247
(2009) 180–189.
- M. Khayet, C. Cojocaru. M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination by
reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network
based correlation for estimating water permeability constant in
RO desalination process under fouling, Desalination, 345 (2014)
101–111.
- M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Operation and
modeling of RO desalination process in batch mode, Comput.
Chem. Eng., 83 (2015) 139–156.
- A.M. Aish, H.A. Zaqoot, S.M. Abdeljawad, Artificial neural
network approach for predicting reverse osmosis desalination
plants performance in the Gaza Strip, Desalination, 367 (2015)
240–247.
- E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari, S.
Nikbakht Sheibani, A. Ehteshami, A mathematical method
and artificial neural network modeling to simulate osmosis
membrane’s performance, Model. Earth Syst. Environ., 2 (2016)
2–11.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Artificial neural
networks applied to manage the variable operation of a simple
seawater reverse osmosis plant, Desalination, 416 (2017)
140–156.
- A. Ruiz-García, J. Feo-García, Operating and maintenance
cost in seawater reverse osmosis desalination plants. Artificial
neural network based model, Desal. Wat. Treat., 73 (2017) 73–79.
- A.F. Abdulbary, L.L. Lai, D.M.K. Al-Gobaisi, A. Husain,
Experience of using the neural network approach for
identification of MSF desalination plants, Desalination, 92
(1993) 323–331.
- R. Selvaraj, P.B. Deshpande, S.S. Tambe, B.D. Kulkarni, Neural
networks for the identification of MSF desalination plants,
Desalination, 101 (1995) 185–193.
- A. Woldai, D.M.K. Al-gobaisi, A.T. Johns, G.P. Rao, ANN based
adaptive control of multistage flash seawater desalination
plants, IFAC Proc., 30 (1997) 867–872.
- E.E. Tarifa, D. Humana, S. Franco, S.L. Martinez, A.F. Nunez,
N.J. Scenna, Fault diagnosis for A MSF using neural networks,
Desalination, 152 (2002) 215–222.
- M.S. Tanvir, I.M. Mujtaba, Neural network based correlations
for estimating temperature elevation for seawater in MSF
desalination process, Desalination, 195 (2006) 251–272.
- A. Aminian, Prediction of temperature elevation for seawater in
multi-stage flash desalination plants using radial basis function
neural network, Chem. Eng. J., 162 (2010) 552–556.
- S. Tayyebi, M. Alishiri, The control of MSF desalination plants
based on inverse model control by neural network, Desalination,
333 (2014) 92–100.
- H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane
separation by neural networks, J. Membr. Sci., 102 (1995)
185–191.
- M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic
modeling of crossflow microfiltration using neural networks, J.
Membr. Sci., 98 (1995) 263–273.
- N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier,
J.M. Lainé, Modelling of ultrafiltration fouling by neural
network, Desalination, 118 (1998) 213–227.
- N. Delgrange-Vincent, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J.M. Laîné, Neural networks for long term prediction
of fouling and backwash efficiency in ultrafiltration for drinking
water production, Desalination, 131 (2000) 353–362.
- W.R. Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef, Predicting
salt rejections at nanofiltration membranes using artificial
neural networks, Desalination, 129 (2000) 147–162.
- G.R. Shetty, S. Chellam, Predicting membrane fouling during
municipal drinking water nanofiltration using artificial neural
networks, J. Membr. Sci., 217 (2003) 69–86.
- G.R. Shetty, H. Malki, S. Chellam, Predicting contaminant
removal during municipal drinking water nanofiltration using
artificial neural networks, J. Membr. Sci., 212 (2003) 99–112.
- H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad,
Rejection and modelling of sulphate and potassium salts by
nanofiltration membranes: neural network and Spiegler-Kedem
model, Desalination, 206 (2007) 42–60.
- P. Gao, L. Zhang, K. Cheng, H. Zhang, A new approach to
performance analysis of a seawater desalination system by an
artificial neural network, Desalination, 205 (2007) 147–155.
- V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M.
Kennedy, G. Amy, Artificial neural network models based on
QSAR for predicting rejection of neutral organic compounds
by polyamide nanofiltration and reverse osmosis membranes,
J. Membr. Sci., 342 (2009) 251–262.
- M. Khayet, C. Cojocaru, Artificial neural network modeling and
optimization of desalination by air gap membrane distillation,
Sep. Purif. Technol., 86 (2012) 171–182.
- I. J. Esfahani, A. Ataei, K.V. Shetty, T. Oh, J.H. Park, C. Yoo,
Modeling and genetic algorithm-based multi-objective
optimization of the MED-TVC desalination system,
Desalination, 292 (2012) 87–104.
- J. Sargolzaei, M. Haghighi Asl, A. Hedayati Moghaddam,
Membrane permeate flux and rejection factor prediction using
intelligent systems, Desalination, 284 (2012) 92–99.
- F. Salehi, S.M.A. Razavi, Dynamic modeling of flux and total
hydraulic resistance in nanofiltration treatment of regeneration
waste brine using artificial neural networks, Desal. Wat. Treat.,
41 (2012) 95–104.
- M. Khayet, C. Cojocaru, Artificial neural network model
for desalination by sweeping gas membrane distillation,
Desalination, 308 (2013) 102–110.
- R. Porrazzo, A. Cipollina, M. Galluzzo, G. Micale, A neural
network-based optimizing control system for a seawaterdesalination
solar-powered membrane distillation unit,
Comput. Chem. Eng., 54 (2013) 79–96.
- R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental
investigation, modeling and optimization of membrane
separation using artificial neural network and multi-objective
optimization using genetic algorithm, Chem. Eng. Res. Des., 91
(2013) 883–903.
- K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial
neural network modelling for removal of chromium (VI) from
wastewater using physisorption onto powdered activated
carbon, Desal. Wat. Treat., 57 (2016) 3632–3641.
- F. Salehi, S.M.A. Razavi, Modeling of waste brine nanofiltration
process using artificial neural network and adaptive neuro-fuzzy
inference system, Desal. Wat. Treat., 57 (2016) 14369–14378.
- P.M. Pardeshi, A.A. Mungray, A.K. Mungray, Determination
of optimum conditions in forward osmosis using a combined
Taguchi-neural approach, Chem. Eng. Res. Des., 109 (2016)
215–225.
- W. Cao, Q. Liu, Y. Wang, I.M. Mujtaba, Modeling and simulation
of VMD desalination process by ANN, Comput. Chem. Eng., 84
(2016) 96–103.
- S. Shirazian, M. Alibabaei, Using neural networks coupled
with particle swarm optimization technique for mathematical
modeling of air gap membrane distillation (AGMD) systems
for desalination process, Neural Comput. Appl., 28 (2017)
2099–2104.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven
SWRO desalination prototype with and without batteries:
a performance simulation using machine learning models,
Desalination, 435 (2018) 77–96.
- K.A. Al-Shayji, Y.A. Liu, Neural networks for predictive
modeling and optimization of large-scale commercial water
desalination plants, Proc. IDA World Congress Desalination
Water Science, Vol. 1 1997, pp. 1–15.
- N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier,
J.M. Lainé, Neural networks for prediction of ultrafiltration
transmembrane pressure - application to drinking water
production, J. Membr. Sci., 150 (1998) 111–123.
- K.A. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale
commercial water desalination plants: data-based neural
network and model-based process simulation, Ind. Eng. Chem.
Res., 41 (2002) 6460–6474.
- M. Cabassud, N. Delgrange-Vincent, C. Cabassud, L. Durand-
Bourlier, J.M. Lainé, Neural networks: a tool to improve UF
plant productivity, Desalination, 145 (2002) 223–231.
- Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality
by modified solution diffusion model and artificial neural
networks, J. Membr. Sci., 263 (2005) 38–46.
- N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural
networks simulation of the filtration of sodium chloride and
magnesium chloride solutions using nanofiltration membranes,
Chem. Eng. Res. Des., 85 (2007) 417–430.
- D. Libotean, J. Giralt, R. Rallo, Y. Cohen, F. Giralt, H.F. Ridgway,
G. Rodriguez, D. Phipps, Organic compounds passage through
RO membranes, J. Membr. Sci., 313 (2008) 23–43.
- M.S.S. Abujazar, S. Fatihah, I.A. Ibrahim, A.E. Kabeel, S. Sharil,
Productivity modelling of a developed inclined stepped solar
still system based on actual performance and using a cascaded
forward neural network model, J. Clean. Prod., 170 (2018)
147–159.
- E.A. Roehl, D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik,
D.W. Phipps, P. Xie, Modeling fouling in a large RO system with
artificial neural networks, J. Membr. Sci., 552 (2018) 95–106.
- H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive power of machine
learning for optimizing solar water heater performance: the
potential application of high-throughput screening, Int. J.
Photoenergy, 2017 (2017) 1–10.
- H. Li, Z. Zhang, Z. Liu, Application of artificial neural networks
for catalysis: a review, Catalysts, 7 (2017) 1–18.
- T. Maeda, Technical Note: How to Rationally Compare the
Performances of Different Machine Learning Models?, PeerJ
Preprint, 2018.