References

  1. M.G. Ahunbay, S.B. Tantekin-Ersolmaz, W.B. Krantz, Energy optimization of a multistage reverse osmosis process for seawater desalination, Desalination, 429 (2018) 1–11.
  2. UNICEF and World Health Organization, Progress on Drinking Water, Sanitation and Hygiene, 2017.
  3. WHO and UNICEF, Safely Managed Drinking Water - Thematic Report on Drinking Water, 2017.
  4. A. Elmekawy, H.M. Hegab, D. Pant, The near-future integration of microbial desalination cells with reverse osmosis technology, Energy Environ. Sci., 7 (2014) 3921–3933.
  5. M. Heibati, C.A. Stedmon, K. Stenroth, S. Rauch, J. Toljander, M. Säve-Söderbergh, K.R. Murphy, Assessment of drinking water quality at the tap using fluorescence spectroscopy, Water Res., 125 (2017) 1–10.
  6. V. Martínez-Alvarez, B. Martin-Gorriz, M. Soto-García, Seawater desalination for crop irrigation - a review of current experiences and revealed key issues, Desalination, 381 (2016) 58–70.
  7. G. Migliorini, E. Luzzo, Seawater reverse osmosis plant using the pressure exchanger for energy recovery: a calculation model, Desalination, 165 (2004) 289–298.
  8. P. Simon, Tapped Out: The Coming World Crisis in Water and What We Can Do About It, Welcome Rain Publisher, New York, 1998.
  9. S. Lee, S. Myung, J. Hong, D. Har, Reverse osmosis desalination process optimized for maximum permeate production with renewable energy, Desalination, 398 (2016) 133–143.
  10. F.S. Pinto, R.C. Marques, Desalination projects economic feasibility: a standardization of cost determinants, Renew. Sustain. Energy Rev., 78 (2017) 904–915.
  11. I. Alatiqi, H. Ettouney, H. El-Dessouky, Process control in water desalination industry: an overview, Desalination, 126 (1999) 15–32.
  12. L.O. Villacorte, S.A.A. Tabatabai, D.M. Anderson, G.L. Amy, J.C. Schippers, M.D. Kennedy, Seawater reverse osmosis desalination and (harmful) algal blooms, Desalination, 360 (2015) 61–80.
  13. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  14. M. Balaban, Desalination 1966-2016, The International Journal of Water Desalting and Purification, The origins, evolution and role of the Desalination Journal, Desalination, 401 (20167) xvi–xx.
  15. L. García-Rodríguez, Seawater desalination driven by renewable energies: a review, Desalination, 143 (2002) 103–113.
  16. Y. Zhang, M. Sivakumar, S. Yang, K. Enever, M. Ramezanianpour, Application of solar energy in water treatment processes: a review, Desalination, 428 (2018) 116–145.
  17. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  18. G. Comodi, L. Cioccolanti, S. Palpacelli, A. Tazioli, T. Nanni, Distributed generation and water production: a study for a region in central Italy, Desal. Wat. Treat., 31 (2011) 218–225.
  19. I.G. Wenten, Khoiruddin, Reverse osmosis applications: prospect and challenges, Desalination, 391 (2016) 112–125.
  20. K. Park, D.Y. Kim, D.R. Yang, Cost-based feasibility study and sensitivity analysis of a new draw solution assisted reverse osmosis (DSARO) process for seawater desalination, Desalination, 422 (2017) 182–193.
  21. J. Imbrogno, J.J. Keating, J. Kilduff, G. Belfort, Critical aspects of RO desalination: a combination strategy, Desalination, 401 (2017) 68–87.
  22. L.O. Villacorte, S.A.A. Tabatabai, N. Dhakal, G. Amy, J.C. Schippers, M.D. Kennedy, Algal blooms: an emerging threat to seawater reverse osmosis desalination, Desal. Wat. Treat., 55 (2015) 2601–2611.
  23. Z. Ge, C. Yang, Y. Liu, X. Du, L. Yang, Y. Yang, Analysis of plate multi-effect distillation system coupled with thermal power generating unit, Appl. Therm. Eng., 67 (2014) 35–42.
  24. P.K. Sen, P.V. Sen, A. Mudgal, S.N. Singh, S.K. Vyas, P. Davies, A small scale multi-effect distillation (MED) unit for rural micro enterprises: Part I-design and fabrication, Desalination, 279 (2011) 15–26.
  25. C.S. Bandi, R. Uppaluri, A. Kumar, Global optimization of MSF seawater desalination processes, Desalination, 394 (2016) 30–43.
  26. J. Xu, Y.B. Singh, G.L. Amy, N. Ghaffour, Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water, J. Membr. Sci., 512 (2016) 73–82.
  27. F. Mahmoudi, G. Moazami Goodarzi, S. Dehghani, A. Akbarzadeh, Experimental and theoretical study of a lab scale permeate gap membrane distillation setup for desalination, Desalination, 419 (2017) 197–210.
  28. B. Kim, G. Gwak, S. Hong, Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S), Desalination, 422 (2017) 5–16.
  29. Y. Mei, C.Y. Tang, Recent developments and future perspectives of reverse electrodialysis technology: a review, Desalination, 425 (2017) 156–174.
  30. P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends in membranes and membrane processes for desalination, Desalination, 391 (2016) 43–60.
  31. I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation of conventional multi-effect evaporation desalination processes, Appl. Therm. Eng., 73 (2014) 1194–1203.
  32. I.S. Al-Mutaz, I. Wazeer, Optimization of location of thermocompressor suction in MED-TVC desalination plants, Desal. Wat. Treat., 57 (2016) 26562–26576.
  33. Y. Zhang, Y. Peng, S. Ji, J. Qi, S. Wang, Numerical modeling and economic evaluation of two multi-effect vacuum membrane distillation (ME-VMD) processes, Desalination, 419 (2017) 39–48.
  34. K.A. Khalid, M.A. Antar, A. Khalifa, O.A. Hamed, Allocation of thermal vapor compressor in multi effect desalination systems with different feed configurations, Desalination, 426 (2018) 164–173.
  35. M.A. Jamil, S.M. Zubair, Effect of feed flow arrangement and number of evaporators on the performance of multieffect mechanical vapor compression desalination systems, Desalination, 429 (2018) 76–87.
  36. P. Wang, Y. Cui, Q. Ge, T. Fern Tew, T.S. Chung, Evaluation of hydroacid complex in the forward osmosis-membrane distillation (FO-MD) system for desalination, J. Membr. Sci., 494 (2015) 1–7.
  37. G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares, T. Missimer, S. Lattemann, Membrane-based seawater desalination: Present and future prospects, Desalination, 401 (2017) 16–21.
  38. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943) 115–137.
  39. D.O. Hebb, The Organization of Behaviour: A Neuropsychological Theory, John Wiley & Sons Publisher, New York, 1949.
  40. F. Rosenblatt, Principles of Neurodynamics, Perceptrons and the Theory of Brain Mechanisms, Spartan Books, 1962.
  41. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc., Nat. Acad. Sci., 79 (1982) 2554–2558.
  42. C.M. Bürger, O. Kolditz, Progress Report on Trend Analysis Methods, Tools and Data Preparation (in Particular Artificial neural Networks (ANN)), University of Tübingen, Center for Applied Geoscience, 2005.
  43. M.E. El-Hawary, Artificial neural networks and possible applications to desalination, Desalination, 92 (1993) 125–147.
  44. M.M. Jafar, A. Zilouchian, Adaptive receptive fields for radial basis functions, Desalination, 135 (2001) 83–91.
  45. Z.V.P. Murthy, M.M. Vora, Prediction of reverse osmosis performance using artificial neural network, Indian J. Chem. Technol., 11 (2004) 108–115.
  46. A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
  47. D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen, Neural network approach for modeling the performance of reverse osmosis membrane desalting, J. Membr. Sci., 326 (2009) 408–419.
  48. Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim, Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant, Desalination, 247 (2009) 180–189.
  49. M. Khayet, C. Cojocaru. M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  50. M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network based correlation for estimating water permeability constant in RO desalination process under fouling, Desalination, 345 (2014) 101–111.
  51. M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Operation and modeling of RO desalination process in batch mode, Comput. Chem. Eng., 83 (2015) 139–156.
  52. A.M. Aish, H.A. Zaqoot, S.M. Abdeljawad, Artificial neural network approach for predicting reverse osmosis desalination plants performance in the Gaza Strip, Desalination, 367 (2015) 240–247.
  53. E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari, S. Nikbakht Sheibani, A. Ehteshami, A mathematical method and artificial neural network modeling to simulate osmosis membrane’s performance, Model. Earth Syst. Environ., 2 (2016) 2–11.
  54. P. Cabrera, J.A. Carta, J. González, G. Melián, Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant, Desalination, 416 (2017) 140–156.
  55. A. Ruiz-García, J. Feo-García, Operating and maintenance cost in seawater reverse osmosis desalination plants. Artificial neural network based model, Desal. Wat. Treat., 73 (2017) 73–79.
  56. A.F. Abdulbary, L.L. Lai, D.M.K. Al-Gobaisi, A. Husain, Experience of using the neural network approach for identification of MSF desalination plants, Desalination, 92 (1993) 323–331.
  57. R. Selvaraj, P.B. Deshpande, S.S. Tambe, B.D. Kulkarni, Neural networks for the identification of MSF desalination plants, Desalination, 101 (1995) 185–193.
  58. A. Woldai, D.M.K. Al-gobaisi, A.T. Johns, G.P. Rao, ANN based adaptive control of multistage flash seawater desalination plants, IFAC Proc., 30 (1997) 867–872.
  59. E.E. Tarifa, D. Humana, S. Franco, S.L. Martinez, A.F. Nunez, N.J. Scenna, Fault diagnosis for A MSF using neural networks, Desalination, 152 (2002) 215–222.
  60. M.S. Tanvir, I.M. Mujtaba, Neural network based correlations for estimating temperature elevation for seawater in MSF desalination process, Desalination, 195 (2006) 251–272.
  61. A. Aminian, Prediction of temperature elevation for seawater in multi-stage flash desalination plants using radial basis function neural network, Chem. Eng. J., 162 (2010) 552–556.
  62. S. Tayyebi, M. Alishiri, The control of MSF desalination plants based on inverse model control by neural network, Desalination, 333 (2014) 92–100.
  63. H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane separation by neural networks, J. Membr. Sci., 102 (1995) 185–191.
  64. M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic modeling of crossflow microfiltration using neural networks, J. Membr. Sci., 98 (1995) 263–273.
  65. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J.M. Lainé, Modelling of ultrafiltration fouling by neural network, Desalination, 118 (1998) 213–227.
  66. N. Delgrange-Vincent, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J.M. Laîné, Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production, Desalination, 131 (2000) 353–362.
  67. W.R. Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef, Predicting salt rejections at nanofiltration membranes using artificial neural networks, Desalination, 129 (2000) 147–162.
  68. G.R. Shetty, S. Chellam, Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks, J. Membr. Sci., 217 (2003) 69–86.
  69. G.R. Shetty, H. Malki, S. Chellam, Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks, J. Membr. Sci., 212 (2003) 99–112.
  70. H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model, Desalination, 206 (2007) 42–60.
  71. P. Gao, L. Zhang, K. Cheng, H. Zhang, A new approach to performance analysis of a seawater desalination system by an artificial neural network, Desalination, 205 (2007) 147–155.
  72. V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G. Amy, Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes, J. Membr. Sci., 342 (2009) 251–262.
  73. M. Khayet, C. Cojocaru, Artificial neural network modeling and optimization of desalination by air gap membrane distillation, Sep. Purif. Technol., 86 (2012) 171–182.
  74. I. J. Esfahani, A. Ataei, K.V. Shetty, T. Oh, J.H. Park, C. Yoo, Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system, Desalination, 292 (2012) 87–104.
  75. J. Sargolzaei, M. Haghighi Asl, A. Hedayati Moghaddam, Membrane permeate flux and rejection factor prediction using intelligent systems, Desalination, 284 (2012) 92–99.
  76. F. Salehi, S.M.A. Razavi, Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks, Desal. Wat. Treat., 41 (2012) 95–104.
  77. M. Khayet, C. Cojocaru, Artificial neural network model for desalination by sweeping gas membrane distillation, Desalination, 308 (2013) 102–110.
  78. R. Porrazzo, A. Cipollina, M. Galluzzo, G. Micale, A neural network-based optimizing control system for a seawaterdesalination solar-powered membrane distillation unit, Comput. Chem. Eng., 54 (2013) 79–96.
  79. R. Soleimani, N.A. Shoushtari, B. Mirza, A. Salahi, Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm, Chem. Eng. Res. Des., 91 (2013) 883–903.
  80. K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon, Desal. Wat. Treat., 57 (2016) 3632–3641.
  81. F. Salehi, S.M.A. Razavi, Modeling of waste brine nanofiltration process using artificial neural network and adaptive neuro-fuzzy inference system, Desal. Wat. Treat., 57 (2016) 14369–14378.
  82. P.M. Pardeshi, A.A. Mungray, A.K. Mungray, Determination of optimum conditions in forward osmosis using a combined Taguchi-neural approach, Chem. Eng. Res. Des., 109 (2016) 215–225.
  83. W. Cao, Q. Liu, Y. Wang, I.M. Mujtaba, Modeling and simulation of VMD desalination process by ANN, Comput. Chem. Eng., 84 (2016) 96–103.
  84. S. Shirazian, M. Alibabaei, Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process, Neural Comput. Appl., 28 (2017) 2099–2104.
  85. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: a performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  86. K.A. Al-Shayji, Y.A. Liu, Neural networks for predictive modeling and optimization of large-scale commercial water desalination plants, Proc. IDA World Congress Desalination Water Science, Vol. 1 1997, pp. 1–15.
  87. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J.M. Lainé, Neural networks for prediction of ultrafiltration transmembrane pressure - application to drinking water production, J. Membr. Sci., 150 (1998) 111–123.
  88. K.A. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation, Ind. Eng. Chem. Res., 41 (2002) 6460–6474.
  89. M. Cabassud, N. Delgrange-Vincent, C. Cabassud, L. Durand- Bourlier, J.M. Lainé, Neural networks: a tool to improve UF plant productivity, Desalination, 145 (2002) 223–231.
  90. Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38–46.
  91. N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes, Chem. Eng. Res. Des., 85 (2007) 417–430.
  92. D. Libotean, J. Giralt, R. Rallo, Y. Cohen, F. Giralt, H.F. Ridgway, G. Rodriguez, D. Phipps, Organic compounds passage through RO membranes, J. Membr. Sci., 313 (2008) 23–43.
  93. M.S.S. Abujazar, S. Fatihah, I.A. Ibrahim, A.E. Kabeel, S. Sharil, Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model, J. Clean. Prod., 170 (2018) 147–159.
  94. E.A. Roehl, D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik, D.W. Phipps, P. Xie, Modeling fouling in a large RO system with artificial neural networks, J. Membr. Sci., 552 (2018) 95–106.
  95. H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive power of machine learning for optimizing solar water heater performance: the potential application of high-throughput screening, Int. J. Photoenergy, 2017 (2017) 1–10.
  96. H. Li, Z. Zhang, Z. Liu, Application of artificial neural networks for catalysis: a review, Catalysts, 7 (2017) 1–18.
  97. T. Maeda, Technical Note: How to Rationally Compare the Performances of Different Machine Learning Models?, PeerJ Preprint, 2018.