References

  1. Y. Shi, Research on the application of the culture resource management based on big data technology, J. Appl. Sci. Eng. Innov., 4 (2017) 64–68.
  2. R. Wang, C. Yang, K. Fang, Removing the residual cellulase by graphene oxide to recycle the bio-polishing effluent for dyeing cotton fabrics, J. Environ. Manage., 207 (2018) 423–431.
  3. M.G. Armentano, D. Godoy, M. Campo, NLP-based faceted search: experience in the development of a science and technology search engine, Expert Syst. Appl., 41 (2014) 2886–2896.
  4. C. Vitolo, Y. Elkhatib, D. Reusser, Web technologies for environmental Big Data, Environ. Model. Software, 63 (2015) 185–198.
  5. J.L. Toole, S. Colak, B. Sturt, L.P. Alexander, A. Evsukoff, M.C. Gonzalez, The path most traveled: travel demand estimation using big data resources, Transp. Res. Part C: Emerg. Technol., 58 (2015) 162–177.
  6. A. McGovern, D. John Gagne, N. Troutman, Nathaniel, R.A. Brown, J. Basara, J.K. Williams, Using spatiotemporal relational random forests to improve our understanding of severe weather processes, Stat. Anal. Data Min. ASA Data Sci. J., 4 (2011) 407–429.
  7. X. Xu, F. Xie, X. Zhou, Research on spatial and temporal characteristics of drought based on GIS using Remote Sensing Big Data, Cluster Comput., 19 (2016) 757–767.
  8. X. He, N.W. Chaney, M. Schleiss, Marc, J. Sheffield, Spatial downscaling of precipitation using adaptable random forests, Water Resour. Res., 52 (2016) 8217–8237.
  9. Y. Kim, N. Kang, J. Jung, H.S. Kim, A review on the management of water resources information based on big data and cloud computing, J. Wetlands Res., 18 (2016) 100-112.
  10. R. Chalh, Z. Bakkoury, D. Ouazar, M.D. Hasnaoui, Big Data Open Platform for Water Resources Management, Cloud Technologies and Applications (CloudTech), 2015 International Conference on IEEE, 2015, pp. 1–8.
  11. L. Hao, R. Wang, K. Fang, Y. Cai, The modification of cotton substrate using chitosan for improving its dyeability towards anionic microencapsulated nano-pigment particles, Ind. Crops Prod., 95 (2017) 348–356.
  12. J. Yang, Research on improve of bat algorithm in the cloud computing resources, J. Appl. Sci. Eng. Innov., 4 (2017) 31–35.
  13. S. Adamala, An overview of big data applications in water resources engineering, Mach. Learn. Res., 2 (2017) 10–18.
  14. S.J. Walker, Big data: a revolution that will transform how we live, work, and think, Int. J. Adv., 33 (2014) 181–183.
  15. M. Swan, The quantified self: fundamental disruption in big data science and biological discovery, Big Data, 1 (2013) 85–99.
  16. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, Big Data: the Next Frontier for Innovation, Competition, and Productivity, Report, McKinsey Global Institute, 2011. Available at: https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
  17. H. Chen, R.H.L. Chiang, V.C. Storey, Business intelligence and analytics: from big data to big impact, MIS Quarterly, JSTOR, 2012.