References
- Y. Shi, Research on the application of the culture resource
management based on big data technology, J. Appl. Sci. Eng.
Innov., 4 (2017) 64–68.
- R. Wang, C. Yang, K. Fang, Removing the residual cellulase by
graphene oxide to recycle the bio-polishing effluent for dyeing
cotton fabrics, J. Environ. Manage., 207 (2018) 423–431.
- M.G. Armentano, D. Godoy, M. Campo, NLP-based faceted
search: experience in the development of a science and
technology search engine, Expert Syst. Appl., 41 (2014)
2886–2896.
- C. Vitolo, Y. Elkhatib, D. Reusser, Web technologies for
environmental Big Data, Environ. Model. Software, 63 (2015)
185–198.
- J.L. Toole, S. Colak, B. Sturt, L.P. Alexander, A. Evsukoff, M.C.
Gonzalez, The path most traveled: travel demand estimation
using big data resources, Transp. Res. Part C: Emerg. Technol.,
58 (2015) 162–177.
- A. McGovern, D. John Gagne, N. Troutman, Nathaniel, R.A.
Brown, J. Basara, J.K. Williams, Using spatiotemporal relational
random forests to improve our understanding of severe weather
processes, Stat. Anal. Data Min. ASA Data Sci. J., 4 (2011)
407–429.
- X. Xu, F. Xie, X. Zhou, Research on spatial and temporal
characteristics of drought based on GIS using Remote Sensing
Big Data, Cluster Comput., 19 (2016) 757–767.
- X. He, N.W. Chaney, M. Schleiss, Marc, J. Sheffield, Spatial
downscaling of precipitation using adaptable random forests,
Water Resour. Res., 52 (2016) 8217–8237.
- Y. Kim, N. Kang, J. Jung, H.S. Kim, A review on the management
of water resources information based on big data and cloud
computing, J. Wetlands Res., 18 (2016) 100-112.
- R. Chalh, Z. Bakkoury, D. Ouazar, M.D. Hasnaoui, Big Data
Open Platform for Water Resources Management, Cloud
Technologies and Applications (CloudTech), 2015 International
Conference on IEEE, 2015, pp. 1–8.
- L. Hao, R. Wang, K. Fang, Y. Cai, The modification of cotton
substrate using chitosan for improving its dyeability towards
anionic microencapsulated nano-pigment particles, Ind. Crops
Prod., 95 (2017) 348–356.
- J. Yang, Research on improve of bat algorithm in the cloud
computing resources, J. Appl. Sci. Eng. Innov., 4 (2017) 31–35.
- S. Adamala, An overview of big data applications in water
resources engineering, Mach. Learn. Res., 2 (2017) 10–18.
- S.J. Walker, Big data: a revolution that will transform how we
live, work, and think, Int. J. Adv., 33 (2014) 181–183.
- M. Swan, The quantified self: fundamental disruption in big
data science and biological discovery, Big Data, 1 (2013) 85–99.
- J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, Big Data: the
Next Frontier for Innovation, Competition, and Productivity,
Report, McKinsey Global Institute, 2011. Available at: https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
- H. Chen, R.H.L. Chiang, V.C. Storey, Business intelligence and
analytics: from big data to big impact, MIS Quarterly, JSTOR,
2012.