References

  1. S. Adami, A. Fakhri, Adsorption of 4-chloro-2-nitrophenol by zero valent iron nanoparticles and Pd-doped zero valent iron nanoparticles surfaces: isotherm, kinetic and mechanism modeling, J. Phys. Chem. Biophys., 3 (2013) 115.
  2. C.F. Chen, N.T. Binh, C.W. Chen, C.D. Dong, Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron, J. Air Waste Manage. Assoc., 65 (2015) 375–383.
  3. D. Prabu, R. Parthiban, P. Senthilkumar, Adsorptive separation of phenol from aqueous solution using nano zero valent iron impregnated cashew nut shell, Int. J. Pharm. Bio. Sci., 6 (2015) 129–140.
  4. R.K. Singhal, B. Gangadhar, H. Basu, V. Manisha, G.R. Naidu, R. Reddy, Remediation of malathion contaminated soil using zero valent iron nano-particles, Am. J. Anal. Chem., 3 (2012) 76–82.
  5. Y. Nakatsuji, Z. Salehi, Y. Kawase, Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron, J. Environ. Manage., 152 (2015) 183–191.
  6. C. Uzum, T. Shahwan, A.E. Eroglu, I. Lieberwirth, T.B. Scott, K.R. Hallam, Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions, Chem. Eng. J., 144 (2008) 213–220.
  7. S. Bhattacharya, I. Saha, A. Mukhopadhyay, D. Chattopadhyay, U. Chand Ghosh, D. Chatterjee, Role of nanotechnology in water treatment and purification: potential applications and implications, Int. J. Chem. Sci. Technol., 3 (2013) 59–64.
  8. A. Rodova, J. Filip, Arsenic immobilization by nanoscale zerovalent iron, Ecol. Chem. Eng., S22 (2015) 1291–1298.
  9. S. Li, W. Yan, W.-x. Zhang, Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling, Green Chem., 11 (2009) 1618–1626.
  10. A. Babuponnusami, K. Muthukumar, Removal of phenol by heterogenous photo electro Fenton like process using nano-zero valent iron, Sep. Purif. Technol., 98 (2012) 130–135.
  11. Y.P. Sun, X.Q. Li, J. Cao, W.X. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120 (2006) 47–56.
  12. C.J. Choi, O. Tolochko, B.K. Kim, Preparation of iron nanoparticles by chemical vapor condensation, Mater. Lett., 56 (2002) 289–294.
  13. L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M. Skluzacek, T.E. Mallouk, Carbothermal synthesis of carbonsupported nano scale zero-valent iron particles for the remediation of hexavalent chromium, Environ. Sci. Technol., 42 (2008) 2600–2605.
  14. E.S. Yusmartini, D. Setiabudidaya, Ridwan, Marsi, Faizal, Synthesis and characterization of zero-valent iron nanoparticles, Adv. Mater. Res., 1112 (2015) 62–65.
  15. S.S. Chen, H.D. Hsu, C.W. Li, A new method to produce nanoscale iron for nitrate removal, J. Nanopart. Res., 6 (2004) 639–647.
  16. G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda, R.S. Varma, Degradation of bromothymol blue by greener nano-scale zero-valent iron synthesized using tea polyphenols, J. Mater. Chem., 19 (2009) 8671–8677.
  17. M. Pattanayak, P.L. Nayak, Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem), World J. Nano Sci. Technol., 2 (2013) 6–9.
  18. S. Machado, J.G. Pacheco, H.P.A. Nouws, J.T. Albergaria, Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts, Sci. Total Environ., 533 (2015) 76–81.
  19. V. Amudha, J. Rajesh Banu, Ick Tae Yeom, Efficiency of zero valent iron in the modified Fenton process for the reduction of excess sludge and the key role of citric acid through deflocculation, Desal. Wat. Treat., 71 (2017) 271–279.
  20. G. Sokkanathan, V. Godvin Sharmila, S. Kaliappan, J. Rajesh Banu, I.T.Yeom, R. Uma Rani, Combinative treatment of phenol-rich retting-pond wastewater by a hybrid upflow anaerobic sludge blanket reactor and solar photo-Fenton process, J. Environ. Manage., 206 (2018) 999–1006.
  21. M. Dineshkumar, A. Sivalingam, M. Thirumarimurugan, Removal of phenol using ZnO nanoparticle in three phase fluidization, Int. J. Eng. Res. Technol., 4 (2015) 1111–1116.
  22. USEPA – 1989, Determination of Phenol: Standard Methods for the Examination of Water and Wastewater Procedures, APHA, AWWA and WPCF, USA, 1989.
  23. I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40 (1916) 1361–1368.
  24. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  25. Q. Liao, J. Sun, L. Gao, The adsorption of resorcinol from water using multiwalled carbon nanotubes, Colloids Surf., A, 312 (2008) 160–165.
  26. M. Ghiaci, A. Abbaspura, R. Kia, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41, Sep. Purif. Technol., 40 (2004) 217–229.
  27. A. Denizli, G. Ozkan, M. Ucar, Removal of chlorophenols from aquatic systems with dye-affinity microbeads, Sep. Purif. Technol., 24 (2001) 255–262.
  28. A. Denizli, G. Okan, M. Ucar, Dye-affinity microbeads for removal of phenols and nitrophenols from aquatic systems, J. Appl. Polym. Sci., 83 (2002) 2411–2418.
  29. M. Ahmaruzzaman, D.K. Sharma, Adsorption of phenols from wastewater, J. Colloid Interface Sci., 287 (2005) 14–24.
  30. V.K. Gupta, I. Ali, V.K. Saini, Removal of chlorophenols from wastewater using red mud: an aluminum industry waste, Environ. Sci. Technol., 38 (2004) 4012–4018.
  31. V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad, I.M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics, Colloids Surf., A, 272 (2006) 89–104.
  32. A.K. Jain, V.K. Gupta, S. Jain, S. Has, Removal of chlorophenols using industrial wastes, Environ. Sci. Technol., 38 (2004) 1195–1200.
  33. M. Otero, F. Rozada, L.F. Calvo, A.I. Garcıa, A. Moran, Elimination of organic water pollutants using adsorbents obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
  34. A.H. Sulaymon, K.W. Ahmed, Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column, Environ. Sci. Technol., 42 (2008) 392–397.
  35. P.S. Nayak, B.K. Singh, Removal of phenol from aqueous solutions by sorption on low cost clay, Desalination, 207 (2007) 71–79.
  36. M.F. Elkady, H.S. Hassan, W.A. Amer, E. Salama, H. Algarni, E.R. Shaaban, Novel magnetic zinc oxide nanotubes for phenol adsorption: mechanism modeling, Materials, 10 (2017) 1355.
  37. M. Malakootian, H.J. Mansooriana, M. Alizadehd, A. Baghbaniane, Phenol removal from aqueous solution by adsorption process: study of the nanoparticles performance prepared from aloe vera and mesquite (prosopis) leaves, Sci. Iran., C24 (2017) 3041–3052.
  38. S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  39. Y.S. Ho, G. McKay, Pseudo second order model for sorption processes, Process Biochem., 34 (1999) 451–465.