References
- S. Adami, A. Fakhri, Adsorption of 4-chloro-2-nitrophenol
by zero valent iron nanoparticles and Pd-doped zero valent
iron nanoparticles surfaces: isotherm, kinetic and mechanism
modeling, J. Phys. Chem. Biophys., 3 (2013) 115.
- C.F. Chen, N.T. Binh, C.W. Chen, C.D. Dong, Removal of
polycyclic aromatic hydrocarbons from sediments using
sodium persulfate activated by temperature and nanoscale
zero-valent iron, J. Air Waste Manage. Assoc., 65 (2015) 375–383.
- D. Prabu, R. Parthiban, P. Senthilkumar, Adsorptive separation
of phenol from aqueous solution using nano zero valent iron
impregnated cashew nut shell, Int. J. Pharm. Bio. Sci., 6 (2015)
129–140.
- R.K. Singhal, B. Gangadhar, H. Basu, V. Manisha, G.R. Naidu,
R. Reddy, Remediation of malathion contaminated soil using
zero valent iron nano-particles, Am. J. Anal. Chem., 3 (2012)
76–82.
- Y. Nakatsuji, Z. Salehi, Y. Kawase, Mechanisms for removal of
p-nitrophenol from aqueous solution using zero-valent iron,
J. Environ. Manage., 152 (2015) 183–191.
- C. Uzum, T. Shahwan, A.E. Eroglu, I. Lieberwirth, T.B. Scott,
K.R. Hallam, Application of zero-valent iron nanoparticles for
the removal of aqueous Co2+ ions under various experimental
conditions, Chem. Eng. J., 144 (2008) 213–220.
- S. Bhattacharya, I. Saha, A. Mukhopadhyay, D. Chattopadhyay,
U. Chand Ghosh, D. Chatterjee, Role of nanotechnology in
water treatment and purification: potential applications and
implications, Int. J. Chem. Sci. Technol., 3 (2013) 59–64.
- A. Rodova, J. Filip, Arsenic immobilization by nanoscale zerovalent
iron, Ecol. Chem. Eng., S22 (2015) 1291–1298.
- S. Li, W. Yan, W.-x. Zhang, Solvent-free production of nanoscale
zero-valent iron (nZVI) with precision milling, Green Chem.,
11 (2009) 1618–1626.
- A. Babuponnusami, K. Muthukumar, Removal of phenol by
heterogenous photo electro Fenton like process using nano-zero
valent iron, Sep. Purif. Technol., 98 (2012) 130–135.
- Y.P. Sun, X.Q. Li, J. Cao, W.X. Zhang, H.P. Wang, Characterization
of zero-valent iron nanoparticles, Adv. Colloid Interface Sci.,
120 (2006) 47–56.
- C.J. Choi, O. Tolochko, B.K. Kim, Preparation of iron
nanoparticles by chemical vapor condensation, Mater. Lett.,
56 (2002) 289–294.
- L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M.
Skluzacek, T.E. Mallouk, Carbothermal synthesis of carbonsupported
nano scale zero-valent iron particles for the
remediation of hexavalent chromium, Environ. Sci. Technol.,
42 (2008) 2600–2605.
- E.S. Yusmartini, D. Setiabudidaya, Ridwan, Marsi, Faizal,
Synthesis and characterization of zero-valent iron nanoparticles,
Adv. Mater. Res., 1112 (2015) 62–65.
- S.S. Chen, H.D. Hsu, C.W. Li, A new method to produce
nanoscale iron for nitrate removal, J. Nanopart. Res., 6 (2004)
639–647.
- G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N.
Nadagouda, R.S. Varma, Degradation of bromothymol blue
by greener nano-scale zero-valent iron synthesized using tea
polyphenols, J. Mater. Chem., 19 (2009) 8671–8677.
- M. Pattanayak, P.L. Nayak, Green synthesis and characterization
of zero valent iron nanoparticles from the leaf extract of
Azadirachta indica (Neem), World J. Nano Sci. Technol., 2 (2013)
6–9.
- S. Machado, J.G. Pacheco, H.P.A. Nouws, J.T. Albergaria,
Characterization of green zero-valent iron nanoparticles
produced with tree leaf extracts, Sci. Total Environ., 533 (2015)
76–81.
- V. Amudha, J. Rajesh Banu, Ick Tae Yeom, Efficiency of zero
valent iron in the modified Fenton process for the reduction
of excess sludge and the key role of citric acid through
deflocculation, Desal. Wat. Treat., 71 (2017) 271–279.
- G. Sokkanathan, V. Godvin Sharmila, S. Kaliappan, J. Rajesh
Banu, I.T.Yeom, R. Uma Rani, Combinative treatment
of phenol-rich retting-pond wastewater by a hybrid upflow
anaerobic sludge blanket reactor and solar photo-Fenton
process, J. Environ. Manage., 206 (2018) 999–1006.
- M. Dineshkumar, A. Sivalingam, M. Thirumarimurugan,
Removal of phenol using ZnO nanoparticle in three phase
fluidization, Int. J. Eng. Res. Technol., 4 (2015) 1111–1116.
- USEPA – 1989, Determination of Phenol: Standard Methods for
the Examination of Water and Wastewater Procedures, APHA,
AWWA and WPCF, USA, 1989.
- I. Langmuir, The adsorption of gases on plane surface of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1916) 1361–1368.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- Q. Liao, J. Sun, L. Gao, The adsorption of resorcinol from
water using multiwalled carbon nanotubes, Colloids Surf., A,
312 (2008) 160–165.
- M. Ghiaci, A. Abbaspura, R. Kia, F. Seyedeyn-Azad, Equilibrium
isotherm studies for the sorption of benzene, toluene, and
phenol onto organo-zeolites and as-synthesized MCM-41, Sep.
Purif. Technol., 40 (2004) 217–229.
- A. Denizli, G. Ozkan, M. Ucar, Removal of chlorophenols
from aquatic systems with dye-affinity microbeads, Sep. Purif.
Technol., 24 (2001) 255–262.
- A. Denizli, G. Okan, M. Ucar, Dye-affinity microbeads for
removal of phenols and nitrophenols from aquatic systems,
J. Appl. Polym. Sci., 83 (2002) 2411–2418.
- M. Ahmaruzzaman, D.K. Sharma, Adsorption of phenols from
wastewater, J. Colloid Interface Sci., 287 (2005) 14–24.
- V.K. Gupta, I. Ali, V.K. Saini, Removal of chlorophenols from
wastewater using red mud: an aluminum industry waste,
Environ. Sci. Technol., 38 (2004) 4012–4018.
- V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad, I.M. Mishra,
Adsorptive removal of phenol by bagasse fly ash and activated
carbon: equilibrium, kinetics and thermodynamics, Colloids
Surf., A, 272 (2006) 89–104.
- A.K. Jain, V.K. Gupta, S. Jain, S. Has, Removal of chlorophenols
using industrial wastes, Environ. Sci. Technol., 38 (2004)
1195–1200.
- M. Otero, F. Rozada, L.F. Calvo, A.I. Garcıa, A. Moran,
Elimination of organic water pollutants using adsorbents
obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
- A.H. Sulaymon, K.W. Ahmed, Competitive adsorption of
furfural and phenolic compounds onto activated carbon in
fixed bed column, Environ. Sci. Technol., 42 (2008) 392–397.
- P.S. Nayak, B.K. Singh, Removal of phenol from aqueous
solutions by sorption on low cost clay, Desalination, 207 (2007)
71–79.
- M.F. Elkady, H.S. Hassan, W.A. Amer, E. Salama, H. Algarni,
E.R. Shaaban, Novel magnetic zinc oxide nanotubes for phenol
adsorption: mechanism modeling, Materials, 10 (2017) 1355.
- M. Malakootian, H.J. Mansooriana, M. Alizadehd, A.
Baghbaniane, Phenol removal from aqueous solution by
adsorption process: study of the nanoparticles performance
prepared from aloe vera and mesquite (prosopis) leaves,
Sci. Iran., C24 (2017) 3041–3052.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, K. Sven. Vetensk.akad. Handl., 24 (1898)
1–39.
- Y.S. Ho, G. McKay, Pseudo second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.