References
- J.D. Brookes, C.C. Carey, Resilience to Blooms, Science, 334
(2011) 46–47.
- M. Qu, D.D. Lefebvre, Y. Wang, Y. Qu, D. Zhu, W. Ren, Algal
blooms: proactive strategy, Science, 346 (2014) 175–176.
- B. Qin, The changing environment of Lake Taihu and its
ecosystem responses, J. Freshwater Ecol., 30 (2015) 1–3.
- L.G. Vilas, E. Spyrakos, J.M.T. Palenzuela, Y. Pazos, Support
vector machine-based method for predicting pseudo-nitzschia
spp. blooms in coastal waters (Galician rias, NW Spain), Progr.
Oceanogr., 124 (2014) 66–77.
- S. Bruder, M.B. Sebens, L. Tedesco, E. Soyeux, Use of fuzzy logic
models for prediction of taste and odor compounds in algal
bloom-affected inland water bodies, Environ. Monit. Assess.,
186 (2014) 1525–1545.
- H. Wang, X. Yan, H. Chen, C. Chen, M. Guo, Chlorophyll-A
predicting model based on dynamic neural network, Appl.
Artif. Intell., 29 (2015) 962–978.
- I. Lou, Z. Xie, W.K. Ung, K.M. Mok, Freshwater algal bloom
prediction by extreme learning machine in Macau storage
reservoirs, Neural Comput. Appl., 21 (2016) 19–26.
- J. Deng, F. Chen, X. Liu, J. Peng, W. Hu, Horizontal migration
of algal patches associated with algal blooms in an eutrophic
shallow lake, Ecol. Eng., 87 (2016) 185–193.
- D.R. Obenour, A.D. Gronewold, C.A. Stow, D. Scavia, Using a
Bayesian hierarchical model to improve Lake Erie algae bloom
forecasts, Water Resour. Res., 50 (2014) 7847–7860.
- Y. Kim, H.S. Shin, J.D. Plummer, A wavelet-based autoregressive
fuzzy model for forecasting algal blooms, Environ. Model.
Software, 62 (2014) 1–10.
- L. Wang, Z. Liu, C. Wu, W. Hua, X. Zhang, Water bloom
prediction and factor analysis based on multidimensional time
series analysis, CIESC J., 64 (2013) 4649–4655.
- S.E. Jorgensen, H. Mejer, M. Friis, Examination of a lake model,
Ecol. Model., 4 (1978) 253–278.
- M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker,
Catastrophic shifts in ecosystems, Nature, 413 (2001) 591–596.
- C.S. Chen, R. Beardsley, P.J.S. Franks, A 3-D prognostic
numerical model study of the Georges Bank ecosystem, Deep
Sea Res. Part II, 48 (2001) 419–456.
- F. Kong, R. Ma, J. Gao, X. Wu, The theory and practice of
prevention, forecast and warning on algae bloom in Lake Taihu,
J. Lake Sci., 21 (2009) 314–328.
- X. Wang, L. Tang, Z. Liu, L. Cun, J. Xu, X. Zhao, Formation
mechanism of cyanobacteria bloom in urban lake reservoir,
CIESC J., 63 (2012) 1492–1497.
- Z. Liu, Q. Wu, X. Wang, L. Cui, X. Lian, Algae growth modeling
based on optimization theory and application to water-bloom
prediction, CIESC J., 59 (2008) 1869–1873.
- Q. Li, W. Hu, S. Zhai, Integrative Indicator for assessing the
alert levels of algal bloom in lakes: lake Taihu as a case study,
Environ. Manage., 57 (2016) 237–250.
- L. Wang, X. Wang, J. Xu, H. Zhang, J. Yao, X. Jin, C. Liu, Y. Shi,
Time-varying nonlinear modeling and analysis of algal bloom
dynamics, Nonlinear Dyn., 84 (2016) 371–378.
- Y. Tanaka, H. Mano, Functional traits of herbivores and food
chain efficiency in a simple aquatic community model, Ecol.
Model., 237 (2012) 88–100.
- X. Wang, J. Yao, Y. Shi, T. Su, L. Wang, J. Xu, Research on hybrid
mechanism modeling of algal bloom formation in urban lakes
and reservoirs, Ecol. Model., 332 (2016) 67–73.
- L. Wang, X. Wang, X. Jin, J. Xu, H. Zhang, J. Yu, Q. Sun, C. Gao,
L. Wang, Analysis of algae growth mechanism and water bloom
prediction under the effect of multi-affecting factor, Saudi J.
Biol. Sci., 24 (2017) 556–562.
- L. Wang, B. Wan, Research on the physics-of-the failure model
for corrosion damage accumulation under a multi-level stress
profile based on the acceleration factor, Bulg. Chem. Commun.,
49 (2017) 204–209.