References

  1. J.D. Brookes, C.C. Carey, Resilience to Blooms, Science, 334 (2011) 46–47.
  2. M. Qu, D.D. Lefebvre, Y. Wang, Y. Qu, D. Zhu, W. Ren, Algal blooms: proactive strategy, Science, 346 (2014) 175–176.
  3. B. Qin, The changing environment of Lake Taihu and its ecosystem responses, J. Freshwater Ecol., 30 (2015) 1–3.
  4. L.G. Vilas, E. Spyrakos, J.M.T. Palenzuela, Y. Pazos, Support vector machine-based method for predicting pseudo-nitzschia spp. blooms in coastal waters (Galician rias, NW Spain), Progr. Oceanogr., 124 (2014) 66–77.
  5. S. Bruder, M.B. Sebens, L. Tedesco, E. Soyeux, Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies, Environ. Monit. Assess., 186 (2014) 1525–1545.
  6. H. Wang, X. Yan, H. Chen, C. Chen, M. Guo, Chlorophyll-A predicting model based on dynamic neural network, Appl. Artif. Intell., 29 (2015) 962–978.
  7. I. Lou, Z. Xie, W.K. Ung, K.M. Mok, Freshwater algal bloom prediction by extreme learning machine in Macau storage reservoirs, Neural Comput. Appl., 21 (2016) 19–26.
  8. J. Deng, F. Chen, X. Liu, J. Peng, W. Hu, Horizontal migration of algal patches associated with algal blooms in an eutrophic shallow lake, Ecol. Eng., 87 (2016) 185–193.
  9. D.R. Obenour, A.D. Gronewold, C.A. Stow, D. Scavia, Using a Bayesian hierarchical model to improve Lake Erie algae bloom forecasts, Water Resour. Res., 50 (2014) 7847–7860.
  10. Y. Kim, H.S. Shin, J.D. Plummer, A wavelet-based autoregressive fuzzy model for forecasting algal blooms, Environ. Model. Software, 62 (2014) 1–10.
  11. L. Wang, Z. Liu, C. Wu, W. Hua, X. Zhang, Water bloom prediction and factor analysis based on multidimensional time series analysis, CIESC J., 64 (2013) 4649–4655.
  12. S.E. Jorgensen, H. Mejer, M. Friis, Examination of a lake model, Ecol. Model., 4 (1978) 253–278.
  13. M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001) 591–596.
  14. C.S. Chen, R. Beardsley, P.J.S. Franks, A 3-D prognostic numerical model study of the Georges Bank ecosystem, Deep Sea Res. Part II, 48 (2001) 419–456.
  15. F. Kong, R. Ma, J. Gao, X. Wu, The theory and practice of prevention, forecast and warning on algae bloom in Lake Taihu, J. Lake Sci., 21 (2009) 314–328.
  16. X. Wang, L. Tang, Z. Liu, L. Cun, J. Xu, X. Zhao, Formation mechanism of cyanobacteria bloom in urban lake reservoir, CIESC J., 63 (2012) 1492–1497.
  17. Z. Liu, Q. Wu, X. Wang, L. Cui, X. Lian, Algae growth modeling based on optimization theory and application to water-bloom prediction, CIESC J., 59 (2008) 1869–1873.
  18. Q. Li, W. Hu, S. Zhai, Integrative Indicator for assessing the alert levels of algal bloom in lakes: lake Taihu as a case study, Environ. Manage., 57 (2016) 237–250.
  19. L. Wang, X. Wang, J. Xu, H. Zhang, J. Yao, X. Jin, C. Liu, Y. Shi, Time-varying nonlinear modeling and analysis of algal bloom dynamics, Nonlinear Dyn., 84 (2016) 371–378.
  20. Y. Tanaka, H. Mano, Functional traits of herbivores and food chain efficiency in a simple aquatic community model, Ecol. Model., 237 (2012) 88–100.
  21. X. Wang, J. Yao, Y. Shi, T. Su, L. Wang, J. Xu, Research on hybrid mechanism modeling of algal bloom formation in urban lakes and reservoirs, Ecol. Model., 332 (2016) 67–73.
  22. L. Wang, X. Wang, X. Jin, J. Xu, H. Zhang, J. Yu, Q. Sun, C. Gao, L. Wang, Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor, Saudi J. Biol. Sci., 24 (2017) 556–562.
  23. L. Wang, B. Wan, Research on the physics-of-the failure model for corrosion damage accumulation under a multi-level stress profile based on the acceleration factor, Bulg. Chem. Commun., 49 (2017) 204–209.