References

  1. WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2017: Wastewater, The Untapped Resource, UNESCO, Paris, 2017.
  2. CONAGUA, National Commission of Water, Statistics of water from Mexico [Estadísticas del agua en México], Planation General Subdirection, Mexico, 2016.
  3. UNICEF/WHO (United Nations International Children´s Emergency Fund and World Health Organization), Progress on Sanitation and Drinking Water-2015 Update and MDG Assessment, WHO Library Cataloguing in Publication Data, New York, 2015.
  4. UNEP (United Nations Environment Programme), UNEP Frontiers 2016 Report: Emerging Issues of Environmental Concern, Nairobi, 2016.
  5. J.G. Tortora, R.B. Funke, L.F. Case, Introduction to Microbiology (Introducción a la microbiología), 9th ed., Editorial Médica Panamericana, Buenos Aires, Argentina, 2009.
  6. P. Sonigo, A. De Toni, K. Reilly, A review of fungi in drinking water and the implications for human health, Defra, 33 (2011) 1–107.
  7. R.M. Niemi, S. Knuth, K. Lundström, Actinomycetes and fungi in surface waters and in potable water, Appl. Environ. Microbiol., 43 (1982) 378–388.
  8. B.M. Novak, P. Zalar, B. Ženko, S. Džeroski, N. Gunde- Cimerman, Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances, Fungal Ecol., 20 (2016) 30–39.
  9. S.L. Miles, R.G. Sinclair, M.R. Riley, I.L. Pepper, Evaluation of select sensors for real-time monitoring of Escherichia coli in water distribution systems, Appl. Environ. Microbiol., 77 (2011) 2813–2816.
  10. M.W. LeChevallier, R.J. Seidler, Staphylococcus aureus in rural drinking water, Appl. Environ. Microbiol., 39 (1980) 739–742.
  11. M. Yamaguchi, R. de Cássia Pontello Rampazzo, S. Yamada- Ogatta, C. Nakamura, T. Ueda-Nakamura, B. Prado Dias Filho, Yeasts and filamentous fungi in bottled mineral water and tap water from municipal supplies, Braz. Arch. Biol. Technol., 50 (2007) 1–9.
  12. S.M.T. Olmedo, Byproducts of water disinfection by the use of chlorine compounds. Effects on health [Subproductos de la desinfección del agua por el empleo de compuestos de cloro. Efectos sobre la salud], Hig. Sanid. Ambient., 8 (2008) 335–342.
  13. D.C.G. Gordillo, Technical and Economical Research on Waste Water Disinfection by Oxidation Methods [Investigación técnica y económica sobre desinfección de aguas residuales por sistema de oxidación], Doctor thesis, Higher Technical School of Civil, Canal and Port Engineers, Madrid, Spain, 2013.
  14. I. Salcedo, J.A. Andrade, J.M. Quiroga, E. Nebot, Photoreactivation and dark repair in UV-treated microorganisms: effect of temperature, Appl. Environ. Microbiol., 73 (2007) 1594–1600.
  15. X. Zhao, S.M. Alpert, J.J. Ducoste, Assessing the impact of upstream hydraulics on the dose distribution of ultraviolet reactors using fluorescence microspheres and computational fluid dynamics, Environ. Eng. Sci., 26 (2009) 947–959.
  16. A.C. Burrola, Kinetic of the Disinfection Process of Water Using Natural Clinoptilolite Exchanged with Metallic Ions as Microbicide [Cinética del proceso de desinfección del agua al utilizar clinoptilolita natural intercambiada con iones metálicos como microbicida], Master thesis, Autonomous University of the State of Mexico, Mexico, 2004.
  17. G.I. De la Rosa, Behavior of the Zeolitic Rocks Modified with Silver for the Disinfection Process of Municipal Waste Water [Comportamiento de rocas zeoliticas acondicionadas con plata, en el proceso de desinfección de agua residual de origen municipal], Doctor thesis, Technological Institute of Toluca, Mexico, 2007.
  18. G.I. De la Rosa, M.T. Olguín, D. Alcántara, Silver-modified Mexican clinoptilolite-rich tuffs with various particle sizes as antimicrobial agents against Escherichia coli, J. Mex. Chem. Soc., 54 (2010) 139–142.
  19. R. Guerra, E. Lima, M. Viniegra, A. Guzmán, V. Lara, Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites, Microporous Mesoporous Mater., 147 (2012) 267–273.
  20. J. Hrenovic, J. Milenkovic, T. Ivankovica, N. Rajic, Antibacterial activity of heavy metal-loaded natural zeolite, J. Hazard. Mater., 201–202 (2012) 260–264.
  21. J. Hrenovic, J. Milenkovic, N. Daneu, K.R. Matonickin, N. Rajic, Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite, Chemosphere, 88 (2012) 1103–1107.
  22. G.M. Rivera, M.T. Olguín, S.I. García, D. Alcántara, F.G. Rodríguez, Silver supported on natural Mexican zeolite as an antibacterial material, Microporous Mesoporous Mater., 39 (2000) 431–444.
  23. C. Rosabal, F.G. Rodríguez, N. Bogdanchikova, P. Bosch, M. Alvaros, V.H. Lara, Comparative study of natural and synthetic clinoptilolites containing silver in different states, Microporous Mesoporous Mater., 86 (2005) 249–255.
  24. L.G. Rossainz-Castro, I. De-La-Rosa-Gómez, M.T. Olguín, D. Alcántara-Díaz, Comparison between silver- and coppermodified zeolite-rich tuffs as microbicide agents for Escherichia coli and Candida albicans, J. Environ. Manage., 183 (2016) 763–770.
  25. A. Top, S. Ülkü, Silver, zinc and cooper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity, Appl. Clay Sci., 27 (2003) 13–19.
  26. L. Akhigbe, S. Ouki, D. Saroj, Disinfection and removal performance for Escherichia coli and heavy metals by silvermodified zeolite in a fixed bed column, Chem. Eng. J., 295 (2016) 92–98.
  27. APHA, AWWA, WEF, Standard Methods for Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington, 2012.
  28. N.H. Mthombeni, L. Mpenyana-Monyatsi, M.S. Onyango, M.N.B. Momba, Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column, J. Hazard. Mater., 217–218 (2012) 133–140.
  29. F. Mumpton, O. Clayton, Morphology of zeolites in sedimentary rocks by scanning electron microscopy, Clays Clay Miner., 24 (1976) 1–23.
  30. G.M. Rivera, Antibacterial Property of the Clinoptilolite Exchanged with Silver Against Escherichia coli and Streptococcus faecalis [Propiedad Antibacteriana de la Clinoptilolita intercambiada con plata, frente a Escherichia coli y Streptococcus faecalis], Master thesis, Autonomous University of the State of Mexico, Mexico, 1999.
  31. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use, Wiley-Interscience Publication Book, New York, 1974.
  32. R.D. Monds, G.A. O’Toole, The developmental model of microbial biofilms: ten years of a paradigm up for review, Trends Microbiol., 17 (2009) 73–87.
  33. L.C. Simoes, M. Simoes, R. Oliveira, M.J. Vieira, Potential of the adhesion of bacteria isolated from drinking water to materials, J. Basic Microbiol., 47 (2007) 174–183.
  34. B. Li, B.E. Logan, Bacterial adhesion to glass and metal-oxide surfaces, Colloids Surf., B, 36 (2004) 81–90.
  35. L.C. Simoes, M. Simoes, M.J. Vieira, Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection, Appl. Environ. Microbiol., 76 (2010) 6673–6679.
  36. E. Cervantes-García, R. García-González, P.M. Salazar-Schettino, General characteristics of Staphylococcus aureus [Características generales del Staphylococcus aureus], Rev. Latinoamer. Patol. Clin., 61 (2014) 28–40.
  37. I. Douterelo, J.B. Boxall, P. Deines, R. Sekar, K.E. Fish, C.A. Biggs, Methodological approaches for studying the microbial ecology of drinking water distribution systems, Water Res., 65 (2014) 134–156.
  38. V. Lazar, Quorum sensing in biofilms-How to destroy the bacterial citadels or their cohesion/power? Anaerobe, 17 (2011) 280–285.
  39. G.V.E. Gonzaga, Interaction of the Ammonium Ion with Silver Modified Natural Zeolite and Its Effect on the Disinfection of Contaminated Water with a Consortium of Microorganisms Gram (+) and Gram (–) [Interacción del ion amonio con zeolita natural acondicionada con plata y su efecto sobre la desinfección de agua contaminada frente a un consorcio de microorganismos Gram (+) y Gram (–)], Master thesis, Technological Institute of Toluca, Mexico, 2013.
  40. L. Mei-Hiu, K. Wan-Ju, L. Chao-Chin, Y. Meng-Wei, Modulation of Staphylococcus aureus spreading by water, Sci. Rep., 6 (2016) 25233.
  41. C.L. Abberton, L. Bereschenko, P. van der Wielen, C.J. Smith, Survival, biofilm formation, and growth potential of environmental and enteric Escherichia coli in drinking water microcosms, Appl. Environ. Microbiol., 82 (2016) 5320–5331.
  42. S. Fass, M.L. Dincher, D.J. Reasoner, D. Gatel, J.C. Block, Fate of Escherichia coli experimentally injected in a drinking water distribution pilot system, Water Res., 30 (1996) 2215–2221.
  43. M.M. Williams, E.B. Braun-Howland, Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine, Appl. Environ. Microbiol., 69 (2003) 5463–5471.
  44. T. Juhna, D. Birzniece, S. Larsson, D. Zulenkovs, A. Sharipo, N.F. Azevedo, F. Menard-Szczebara, S. Castagnet, C. Feliers, C.W. Keevil, Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks, Appl. Environ. Microbiol., 73 (2007) 7456–7464.
  45. L. Mezule, S. Larsson, T. Juhna, Application of DVC-FISH method in tracking Escherichia coli in drinking water distribution networks, Drinking Water Eng. Sci., 6 (2013) 25–31.
  46. R.Y.A. Hassan, R.O. El-Attar, H.N.A. Hassan, M.A. Ahmed, E. Khaled, Carbon nanotube-based electrochemical biosensors for determination of Candida albicans’s quorum sensing molecule, Sens. Actuators, B, 244 (2017) 565–570.
  47. Y. Kaneko, S. Miyagawa, O. Takeda, M. Hakariya, S. Matsumoto, H. Ohno, Y. Miyazakia, Real-time microscopic observation of Candida biofilm development and effects due to micafungin and fluconazole, Antimicrob. Agents Chemother., 57 (2013) 2226–2230.
  48. P. Uppuluri, A.K. Chaturvedi, A. Srinivasan, M. Banerjee, A.K. Ramasubramaniam, J.R. Köhler, D. Kadosh, J.L. Lopez- Ribot, Dispersion as an important step in the Candida albicans biofilm developmental cycle, PLoS Pathog., 6 (2010) 1–13.
  49. P. Muller, B. Guggenheim, P.R. Schmidlin, Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro, Eur. J. Oral Sci., 115 (2007) 77–80.
  50. P.S. Stewart, J.W. Costerton, Antibiotic resistance of bacteria in biofilms. Lancet, 358 (2001) 135–138.
  51. G. Kinsey, R. Paterson, J. Kelley, Filamentous Fungi in Water Systems, D. Mara, N. Horan, Eds., Handbook of Water and Wastewater Microbiology, Academic Press, London, 2003.
  52. R.R.M. Paterson, N. Lima, Fungal Contamination of Drinking Water, J. Lehr, J. Keeley, J. Lehr, III. T.B. Kingery, Eds., Water Encyclopedia, John Wiley and Sons, New Jersey, 2005.
  53. C.L.G. Rossainz, Microbicidal Activity of Clinoptilolite Modified with Silver or Copper Against a Microbial Consortium (coliforms and yeasts) in the Presence of Organic Components Associated with Municipal Wastewater [Actividad microbicida de la clinoptilolita modificada con plata o cobre frente a un consorcio microbiano (coliformes y levaduras) en presencia de componentes orgánicos asociados al agua residual municipal], Doctor thesis, Technological Institute of Toluca, Mexico, 2017.
  54. D. Jiraroj, S. Tungasmita, D.N. Tungasmita, Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity, Powder Technol., 264 (2014) 418–422.
  55. P. Lalueza, M. Monzó, M. Arruebo, J. Santamaría, Bactericidal effects of different silver-containing materials, Mater. Res. Bull., 46 (2011) 2070–2076.