References
- WWAP (United Nations World Water Assessment Programme),
The United Nations World Water Development Report 2017:
Wastewater, The Untapped Resource, UNESCO, Paris, 2017.
- CONAGUA, National Commission of Water, Statistics of water
from Mexico [Estadísticas del agua en México], Planation
General Subdirection, Mexico, 2016.
- UNICEF/WHO (United Nations International Children´s
Emergency Fund and World Health Organization), Progress
on Sanitation and Drinking Water-2015 Update and MDG
Assessment, WHO Library Cataloguing in Publication Data,
New York, 2015.
- UNEP (United Nations Environment Programme), UNEP
Frontiers 2016 Report: Emerging Issues of Environmental Concern,
Nairobi, 2016.
- J.G. Tortora, R.B. Funke, L.F. Case, Introduction to Microbiology
(Introducción a la microbiología), 9th ed., Editorial Médica
Panamericana, Buenos Aires, Argentina, 2009.
- P. Sonigo, A. De Toni, K. Reilly, A review of fungi in drinking
water and the implications for human health, Defra, 33 (2011)
1–107.
- R.M. Niemi, S. Knuth, K. Lundström, Actinomycetes and
fungi in surface waters and in potable water, Appl. Environ.
Microbiol., 43 (1982) 378–388.
- B.M. Novak, P. Zalar, B. Ženko, S. Džeroski, N. Gunde-
Cimerman, Yeasts and yeast-like fungi in tap water and
groundwater, and their transmission to household appliances,
Fungal Ecol., 20 (2016) 30–39.
- S.L. Miles, R.G. Sinclair, M.R. Riley, I.L. Pepper, Evaluation
of select sensors for real-time monitoring of Escherichia coli in
water distribution systems, Appl. Environ. Microbiol., 77 (2011)
2813–2816.
- M.W. LeChevallier, R.J. Seidler, Staphylococcus aureus in rural
drinking water, Appl. Environ. Microbiol., 39 (1980) 739–742.
- M. Yamaguchi, R. de Cássia Pontello Rampazzo, S. Yamada-
Ogatta, C. Nakamura, T. Ueda-Nakamura, B. Prado Dias Filho,
Yeasts and filamentous fungi in bottled mineral water and tap
water from municipal supplies, Braz. Arch. Biol. Technol., 50
(2007) 1–9.
- S.M.T. Olmedo, Byproducts of water disinfection by the use
of chlorine compounds. Effects on health [Subproductos de
la desinfección del agua por el empleo de compuestos de
cloro. Efectos sobre la salud], Hig. Sanid. Ambient., 8 (2008)
335–342.
- D.C.G. Gordillo, Technical and Economical Research on Waste
Water Disinfection by Oxidation Methods [Investigación
técnica y económica sobre desinfección de aguas residuales
por sistema de oxidación], Doctor thesis, Higher Technical
School of Civil, Canal and Port Engineers, Madrid, Spain,
2013.
- I. Salcedo, J.A. Andrade, J.M. Quiroga, E. Nebot, Photoreactivation
and dark repair in UV-treated microorganisms: effect of
temperature, Appl. Environ. Microbiol., 73 (2007) 1594–1600.
- X. Zhao, S.M. Alpert, J.J. Ducoste, Assessing the impact of
upstream hydraulics on the dose distribution of ultraviolet
reactors using fluorescence microspheres and computational
fluid dynamics, Environ. Eng. Sci., 26 (2009) 947–959.
- A.C. Burrola, Kinetic of the Disinfection Process of Water
Using Natural Clinoptilolite Exchanged with Metallic Ions as
Microbicide [Cinética del proceso de desinfección del agua al
utilizar clinoptilolita natural intercambiada con iones metálicos
como microbicida], Master thesis, Autonomous University of
the State of Mexico, Mexico, 2004.
- G.I. De la Rosa, Behavior of the Zeolitic Rocks Modified with
Silver for the Disinfection Process of Municipal Waste Water
[Comportamiento de rocas zeoliticas acondicionadas con
plata, en el proceso de desinfección de agua residual de origen
municipal], Doctor thesis, Technological Institute of Toluca,
Mexico, 2007.
- G.I. De la Rosa, M.T. Olguín, D. Alcántara, Silver-modified
Mexican clinoptilolite-rich tuffs with various particle sizes as
antimicrobial agents against Escherichia coli, J. Mex. Chem. Soc.,
54 (2010) 139–142.
- R. Guerra, E. Lima, M. Viniegra, A. Guzmán, V. Lara, Growth
of Escherichia coli and Salmonella typhi inhibited by fractal silver
nanoparticles supported on zeolites, Microporous Mesoporous
Mater., 147 (2012) 267–273.
- J. Hrenovic, J. Milenkovic, T. Ivankovica, N. Rajic, Antibacterial
activity of heavy metal-loaded natural zeolite, J. Hazard. Mater.,
201–202 (2012) 260–264.
- J. Hrenovic, J. Milenkovic, N. Daneu, K.R. Matonickin, N. Rajic,
Antimicrobial activity of metal oxide nanoparticles supported
onto natural clinoptilolite, Chemosphere, 88 (2012) 1103–1107.
- G.M. Rivera, M.T. Olguín, S.I. García, D. Alcántara,
F.G. Rodríguez, Silver supported on natural Mexican zeolite
as an antibacterial material, Microporous Mesoporous Mater.,
39 (2000) 431–444.
- C. Rosabal, F.G. Rodríguez, N. Bogdanchikova, P. Bosch,
M. Alvaros, V.H. Lara, Comparative study of natural and
synthetic clinoptilolites containing silver in different states,
Microporous Mesoporous Mater., 86 (2005) 249–255.
- L.G. Rossainz-Castro, I. De-La-Rosa-Gómez, M.T. Olguín,
D. Alcántara-Díaz, Comparison between silver- and coppermodified
zeolite-rich tuffs as microbicide agents for Escherichia
coli and Candida albicans, J. Environ. Manage., 183 (2016) 763–770.
- A. Top, S. Ülkü, Silver, zinc and cooper exchange in a
Na-clinoptilolite and resulting effect on antibacterial activity,
Appl. Clay Sci., 27 (2003) 13–19.
- L. Akhigbe, S. Ouki, D. Saroj, Disinfection and removal
performance for Escherichia coli and heavy metals by silvermodified
zeolite in a fixed bed column, Chem. Eng. J., 295
(2016) 92–98.
- APHA, AWWA, WEF, Standard Methods for Examination
of Water and Wastewater, 22nd ed., American Public Health
Association, Washington, 2012.
- N.H. Mthombeni, L. Mpenyana-Monyatsi, M.S. Onyango,
M.N.B. Momba, Breakthrough analysis for water disinfection
using silver nanoparticles coated resin beads in fixed-bed
column, J. Hazard. Mater., 217–218 (2012) 133–140.
- F. Mumpton, O. Clayton, Morphology of zeolites in sedimentary
rocks by scanning electron microscopy, Clays Clay Miner.,
24 (1976) 1–23.
- G.M. Rivera, Antibacterial Property of the Clinoptilolite
Exchanged with Silver Against Escherichia coli and Streptococcus
faecalis [Propiedad Antibacteriana de la Clinoptilolita
intercambiada con plata, frente a Escherichia coli y Streptococcus
faecalis], Master thesis, Autonomous University of the State of
Mexico, Mexico, 1999.
- D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry,
and Use, Wiley-Interscience Publication Book, New York, 1974.
- R.D. Monds, G.A. O’Toole, The developmental model of
microbial biofilms: ten years of a paradigm up for review,
Trends Microbiol., 17 (2009) 73–87.
- L.C. Simoes, M. Simoes, R. Oliveira, M.J. Vieira, Potential of the
adhesion of bacteria isolated from drinking water to materials,
J. Basic Microbiol., 47 (2007) 174–183.
- B. Li, B.E. Logan, Bacterial adhesion to glass and metal-oxide
surfaces, Colloids Surf., B, 36 (2004) 81–90.
- L.C. Simoes, M. Simoes, M.J. Vieira, Influence of the diversity
of bacterial isolates from drinking water on resistance of
biofilms to disinfection, Appl. Environ. Microbiol., 76 (2010)
6673–6679.
- E. Cervantes-García, R. García-González, P.M. Salazar-Schettino,
General characteristics of Staphylococcus aureus [Características
generales del Staphylococcus aureus], Rev. Latinoamer. Patol.
Clin., 61 (2014) 28–40.
- I. Douterelo, J.B. Boxall, P. Deines, R. Sekar, K.E. Fish, C.A. Biggs,
Methodological approaches for studying the microbial ecology
of drinking water distribution systems, Water Res., 65 (2014)
134–156.
- V. Lazar, Quorum sensing in biofilms-How to destroy the
bacterial citadels or their cohesion/power? Anaerobe, 17 (2011)
280–285.
- G.V.E. Gonzaga, Interaction of the Ammonium Ion with Silver
Modified Natural Zeolite and Its Effect on the Disinfection of
Contaminated Water with a Consortium of Microorganisms
Gram (+) and Gram (–) [Interacción del ion amonio con zeolita
natural acondicionada con plata y su efecto sobre la desinfección
de agua contaminada frente a un consorcio de microorganismos
Gram (+) y Gram (–)], Master thesis, Technological Institute
of Toluca, Mexico, 2013.
- L. Mei-Hiu, K. Wan-Ju, L. Chao-Chin, Y. Meng-Wei, Modulation
of Staphylococcus aureus spreading by water, Sci. Rep., 6 (2016)
25233.
- C.L. Abberton, L. Bereschenko, P. van der Wielen,
C.J. Smith, Survival, biofilm formation, and growth potential
of environmental and enteric Escherichia coli in drinking water
microcosms, Appl. Environ. Microbiol., 82 (2016) 5320–5331.
- S. Fass, M.L. Dincher, D.J. Reasoner, D. Gatel, J.C. Block, Fate
of Escherichia coli experimentally injected in a drinking water
distribution pilot system, Water Res., 30 (1996) 2215–2221.
- M.M. Williams, E.B. Braun-Howland, Growth of Escherichia coli
in model distribution system biofilms exposed to hypochlorous
acid or monochloramine, Appl. Environ. Microbiol., 69 (2003)
5463–5471.
- T. Juhna, D. Birzniece, S. Larsson, D. Zulenkovs, A. Sharipo,
N.F. Azevedo, F. Menard-Szczebara, S. Castagnet, C. Feliers,
C.W. Keevil, Detection of Escherichia coli in biofilms from pipe
samples and coupons in drinking water distribution networks,
Appl. Environ. Microbiol., 73 (2007) 7456–7464.
- L. Mezule, S. Larsson, T. Juhna, Application of DVC-FISH
method in tracking Escherichia coli in drinking water distribution
networks, Drinking Water Eng. Sci., 6 (2013) 25–31.
- R.Y.A. Hassan, R.O. El-Attar, H.N.A. Hassan, M.A. Ahmed,
E. Khaled, Carbon nanotube-based electrochemical biosensors
for determination of Candida albicans’s quorum sensing
molecule, Sens. Actuators, B, 244 (2017) 565–570.
- Y. Kaneko, S. Miyagawa, O. Takeda, M. Hakariya, S. Matsumoto,
H. Ohno, Y. Miyazakia, Real-time microscopic observation of
Candida biofilm development and effects due to micafungin
and fluconazole, Antimicrob. Agents Chemother., 57 (2013)
2226–2230.
- P. Uppuluri, A.K. Chaturvedi, A. Srinivasan, M. Banerjee,
A.K. Ramasubramaniam, J.R. Köhler, D. Kadosh, J.L. Lopez-
Ribot, Dispersion as an important step in the Candida albicans biofilm developmental cycle, PLoS Pathog., 6 (2010) 1–13.
- P. Muller, B. Guggenheim, P.R. Schmidlin, Efficacy of gasiform
ozone and photodynamic therapy on a multispecies oral biofilm
in vitro, Eur. J. Oral Sci., 115 (2007) 77–80.
- P.S. Stewart, J.W. Costerton, Antibiotic resistance of bacteria in
biofilms. Lancet, 358 (2001) 135–138.
- G. Kinsey, R. Paterson, J. Kelley, Filamentous Fungi in Water
Systems, D. Mara, N. Horan, Eds., Handbook of Water and
Wastewater Microbiology, Academic Press, London, 2003.
- R.R.M. Paterson, N. Lima, Fungal Contamination of Drinking
Water, J. Lehr, J. Keeley, J. Lehr, III. T.B. Kingery, Eds., Water
Encyclopedia, John Wiley and Sons, New Jersey, 2005.
- C.L.G. Rossainz, Microbicidal Activity of Clinoptilolite
Modified with Silver or Copper Against a Microbial Consortium
(coliforms and yeasts) in the Presence of Organic Components
Associated with Municipal Wastewater [Actividad microbicida
de la clinoptilolita modificada con plata o cobre frente a un
consorcio microbiano (coliformes y levaduras) en presencia de
componentes orgánicos asociados al agua residual municipal],
Doctor thesis, Technological Institute of Toluca, Mexico, 2017.
- D. Jiraroj, S. Tungasmita, D.N. Tungasmita, Silver ions and
silver nanoparticles in zeolite A composites for antibacterial
activity, Powder Technol., 264 (2014) 418–422.
- P. Lalueza, M. Monzó, M. Arruebo, J. Santamaría, Bactericidal
effects of different silver-containing materials, Mater. Res. Bull.,
46 (2011) 2070–2076.