References

  1. U. Tezel, S.G. Pavlostathis, Transformation of benzalkonium chloride under nitrate reducing conditions, Environ. Sci. Technol., 43 (2009) 1342–1348.
  2. M.N. Khan, U. Zareen, Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water, J. Hazard. Mater., 133 (2006) 269.
  3. E.C. Martinez, A. Sitka, C.B. Gonzalez, N. Kreuzinger, M. Furhacker, S. Scharf, O. Gans, Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part I. Application to surface, waste and indirect discharge water samples in Austria, Environ. Pollut., 145 (2007) 489–496.
  4. E.C. Martinez, A. Sitka, C.B. Gonzalez, N. Kreuzinger, M. Furhacker, S. Scharf, O. Gans, Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part II. Application to sediment and sludge samples in Austria, Environ. Pollut., 146 (2007) 543–547.
  5. W.H. Gaze, N. Abdouslam, P.M. Hawkey, E.M. Wellington, Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment, Antimicrob. Agents Chemother., 49 (2005) 1802–1807.
  6. T. Deutschle, U. Porkert, R. Reiter, T. Keck, H. Riechelmann, In vitro genotoxicity and cytotoxicity of benzalkonium chloride, Toxicol. In Vitro, 20 (2006) 1472–1477.
  7. F. Ferk, M. Misík, C. Hoelzl, M. Uhl, M. Fuerhacker, B. Grillitsch, W. Parzefall, A. Nersesyan, K. Micieta, T. Grummt, Benzalkonium chloride (BAC) and dimethyldioctadecyl ammonium bromide (DDAB) two common quaternary ammonium compounds, cause genotoxic effects in mammalian and plant cells at environmentally relevant concentrations, Mutagenesis, 22 (2007) 363–370.
  8. C. Zhang, U. Tezel, K. Li, D. Liu, R. Ren, J. Du, S.G. Pavlostathis, Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge, Water Res., 45 (2011) 1238–1246.
  9. M.G. Hajaya, S.G. Pavlostathis, Fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater, Bioresour. Technol., 188 (2012) 73–81.
  10. S. Bae, D. Kim, W. Lee, Degradation of diclofenac by pyrite catalyzed Fenton oxidation, Appl. Catal., B, 134 (2013) 93–102.
  11. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Environmental implications of hydroxyl radicals ((•)OH), Chem. Rev., 115 (2015) 54–62.
  12. S.H. Lin, C.M. Lin, H.G. Leu, Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation, Water Res., 33 (1999) 1735–1741.
  13. S. Sabhi, J. Kiwi, Degradation of 2,4-dichlorophenol by immobilized iron catalysts, Water Res., 35 (2001) 1994–2002.
  14. R.C.C. Costa, F.C.C. Moura, J.D. Ardisson, J.D. Fabris, R.M. Lago, Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides, Appl. Catal., B, 83 (2008) 131–139.
  15. M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-a review, Appl. Catal., B, 176–177 (2015) 249–265.
  16. J. Fernandez, J. Bandara, J. Kiwi, Efficient photo-assisted Fenton catalysis mediated by Fe ions on Nafion membranes active in the abatement of non-biodegradable azo-dye, Chem. Commun., 14 (1998) 1493–1494.
  17. S.X. Zha, Y. Cheng, Y. Gao, Z.L. Chen, M. Megharaj, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255 (2014) 141–148.
  18. F.L. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater., 267 (2014) 194–205.
  19. C.R. Keenan, D.L. Sedlak, Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol., 42 (2008) 1262–1267.
  20. K. Hojeong, H.J. Hong, J. Juri, S.H. Kim, J.W. Wang, Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead, J. Hazard. Mater., 176 (2010) 1038.
  21. J.H. Min, J.G. Hering, Arsenate sorption by Fe(III)-doped alginate gels, Water Res., 32 (1998) 1544–1552.
  22. S.B. Hammouda, N. Adhoum, L. Monser, Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process, J. Hazard. Mater., 294 (2015) 128.
  23. L. Xu, J. Wang, Fenton-like degradation of 2,4-dichlorophenol using Fe3O4, magnetic nanoparticles, Appl. Catal., B, 123–124 (2012) 117–126.
  24. H. Niu, Z. Di, Y. Meng, H. Cai, Fast defluorination and removal of norfloxacin by alginate Fe@Fe3O4 core shell structured nanoparticles, J. Hazard. Mater., 227 (2012) 195–203.
  25. E. Rosales, O. Iglesias, M. Pazos, M.A. Sanromán, Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads, J. Hazard. Mater., 213 (2012) 369–377.
  26. Y. Dong, W. Dong, Y. Cao, Z. Han, Z. Ding, Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation, Catal. Today, 175 (2011) 346–355.
  27. S. Barreca, J.J.V. Colmenares, A. Pace, S. Orecchio, C. Pulgarin, Neutral solar photo-Fenton degradation of 4-nitrophenol on iron-enriched hybrid montmorillonite-alginate beads (Fe-MABs), J. Photochem. Photobiol., A, 282 (2014) 33–40.
  28. C. Prabhu, S. Wanjari, S. Gawande, S. Das, N. Labhsetwar, S. Kotwal, A. Puri, T. Satyanarayana, S. Rayalu, Immobilization of carbonic anhydrase enriched microorganism on biopolymerbased materials, J. Mol. Catal. B, 60 (2009) 13–21.
  29. M.A. Patrauchan, P.J. Oriel, Degradation of benzyldime thylalkylammonium chloride by Aeromonas hydrophila sp., J. Appl. Microbiol., 94 (2003) 266–2729.
  30. L. Xu, J. Wang, A heterogeneous Fenton system with nanoparticulate zerovalent iron for removal of 4-chloro-3- methyl phenol, J. Hazard. Mater., 186 (2011) 256–264.
  31. A.A. Assadi, Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst, Appl. Catal., B, 182 (2015) 47–58.
  32. I.A. Alaton, B.H. Gürsoy, Advanced oxidation of acid and reactive dyes: effect of Fenton treatment aerobic, anoxic and anaerobic processes, Dyes Pigm., 78 (2008) 117–130.
  33. X. Xu, Z. Zhao, X. Li, J. Gu, Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent, Chemosphere, 55 (2004) 73–79.
  34. S.C. Xu, H.D. Zhou, H.Y. Wei, J. Lu, The pH dependence and effects of the oxidative products of some aromatic compounds in ozonation under irradiation, Ozone Sci. Eng., 11 (1989) 281–296.
  35. M.R. Carrasco-Díaz, E. Castillejos-López, A. Cerpa-Naranjo, M.L. Rojas-Cervantes, On the textural and crystalline properties of Fe-carbon xerogels. Application as Fenton-like catalysts in the oxidation of paracetamol by H2O2, Microporous Mesoporous Mater., 237 (2017) 282–293.
  36. V. Kavitha, K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55 (2004) 1235–1243.
  37. S. Navalon, R. Martin, M. Alvaro, H. Garcia, Gold on diamond nanoparticles as a highly efficient Fenton catalyst, Angew. Chem. Int. Ed., 49 (2010) 8403–8407.
  38. M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of Acid Blue 74 using FeZSM5 zeolite as a heterogeneous photo-Fenton catalyst, Appl. Catal., B, 84 (2008) 9–15.
  39. Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly efficient photocatalytic degradation of organic pollutants by pani-modified TiO2 composite, J. Phys. Chem. C, 116 (2012) 5764–5772.
  40. D. Du, W. Shi, L. Wang, J. Zhang, Yolk-shell structured Fe3O4@ void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline, Appl. Catal., B, 200 (2017) 484–492.
  41. C. Liang, H.W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 472–475.
  42. E.L. Loveira, P.S. Fiol, A. Senn, G. Curutchet, R. Candal, M.I. Litter, TiO2-photocatalytic treatment coupled with biological systems for the elimination of benzalkonium chloride in water, Sep. Purif. Technol., 91 (2012) 108–116.
  43. N. Huang, T. Wang, W.L. Wang, Q.Y. Wu, A. Li, H.Y. Hu, UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: synergistic effect, transformation products and toxicity evaluation, Water Res., 114 (2017) 246–253.
  44. A.H. Khan, J. Kim, M. Sumarah, S.M. Macfie, M.B. Ray, Toxicity reduction and improved biodegradability of benzalkonium chlorides by ozone/hydrogen peroxide advanced oxidation process, Sep. Purif. Technol., 185 (2017) 72–82.
  45. J.M. Hong, Y.F. Xia, Q. Zhang, B.Y. Chen, Oxidation of benzalkonium chloride in aqueous solution by S2O82-/Fe2+ process: degradation pathway, and toxicity evaluation, J. Taiwan Inst. Chem. Eng, 78 (2017) 230–239.
  46. Q. Zhang, Y.F. Xia, J.M. Hong, Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe2+ process, Environ. Sci. Pollut. Res., 23 (2016) 17822–17830.
  47. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy, Carbohydr. Res., 345 (2010) 469–473.
  48. P.S. Suchithra, R. Carleer, S. Ananthakumar, J. Yperman, A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride, J. Hazard. Mater., 293 (2015) 122–130.
  49. J.B. Carbajo, A.L. Petre, R. Rosal, A. Berná, P. Letón, E. García- Calvo, J.A. Perdigón Melón, Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles, Chem. Eng. J., 283 (2016) 740–749.