References
- U. Tezel, S.G. Pavlostathis, Transformation of benzalkonium
chloride under nitrate reducing conditions, Environ. Sci.
Technol., 43 (2009) 1342–1348.
- M.N. Khan, U. Zareen, Sand sorption process for the removal
of sodium dodecyl sulfate (anionic surfactant) from water,
J. Hazard. Mater., 133 (2006) 269.
- E.C. Martinez, A. Sitka, C.B. Gonzalez, N. Kreuzinger,
M. Furhacker, S. Scharf, O. Gans, Determination of selected
quaternary ammonium compounds by liquid chromatography
with mass spectrometry. Part I. Application to surface, waste
and indirect discharge water samples in Austria, Environ.
Pollut., 145 (2007) 489–496.
- E.C. Martinez, A. Sitka, C.B. Gonzalez, N. Kreuzinger,
M. Furhacker, S. Scharf, O. Gans, Determination of selected
quaternary ammonium compounds by liquid chromatography
with mass spectrometry. Part II. Application to sediment and
sludge samples in Austria, Environ. Pollut., 146 (2007) 543–547.
- W.H. Gaze, N. Abdouslam, P.M. Hawkey, E.M. Wellington,
Incidence of class 1 integrons in a quaternary ammonium
compound-polluted environment, Antimicrob. Agents
Chemother., 49 (2005) 1802–1807.
- T. Deutschle, U. Porkert, R. Reiter, T. Keck, H. Riechelmann, In
vitro genotoxicity and cytotoxicity of benzalkonium chloride,
Toxicol. In Vitro, 20 (2006) 1472–1477.
- F. Ferk, M. Misík, C. Hoelzl, M. Uhl, M. Fuerhacker,
B. Grillitsch, W. Parzefall, A. Nersesyan, K. Micieta, T. Grummt,
Benzalkonium chloride (BAC) and dimethyldioctadecyl
ammonium bromide (DDAB) two common quaternary
ammonium compounds, cause genotoxic effects in mammalian
and plant cells at environmentally relevant concentrations,
Mutagenesis, 22 (2007) 363–370.
- C. Zhang, U. Tezel, K. Li, D. Liu, R. Ren, J. Du, S.G. Pavlostathis,
Evaluation and modeling of benzalkonium chloride inhibition
and biodegradation in activated sludge, Water Res., 45 (2011)
1238–1246.
- M.G. Hajaya, S.G. Pavlostathis, Fate and effect of benzalkonium
chlorides in a continuous-flow biological nitrogen removal
system treating poultry processing wastewater, Bioresour.
Technol., 188 (2012) 73–81.
- S. Bae, D. Kim, W. Lee, Degradation of diclofenac by pyrite
catalyzed Fenton oxidation, Appl. Catal., B, 134 (2013) 93–102.
- S. Gligorovski, R. Strekowski, S. Barbati, D. Vione,
Environmental implications of hydroxyl radicals ((•)OH),
Chem. Rev., 115 (2015) 54–62.
- S.H. Lin, C.M. Lin, H.G. Leu, Operating characteristics and
kinetic studies of surfactant wastewater treatment by Fenton
oxidation, Water Res., 33 (1999) 1735–1741.
- S. Sabhi, J. Kiwi, Degradation of 2,4-dichlorophenol by
immobilized iron catalysts, Water Res., 35 (2001) 1994–2002.
- R.C.C. Costa, F.C.C. Moura, J.D. Ardisson, J.D. Fabris, R.M.
Lago, Highly active heterogeneous Fenton-like systems based
on Fe0/Fe3O4 composites prepared by controlled reduction of
iron oxides, Appl. Catal., B, 83 (2008) 131–139.
- M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez,
Preparation of magnetite-based catalysts and their application
in heterogeneous Fenton oxidation-a review, Appl. Catal., B,
176–177 (2015) 249–265.
- J. Fernandez, J. Bandara, J. Kiwi, Efficient photo-assisted Fenton
catalysis mediated by Fe ions on Nafion membranes active in
the abatement of non-biodegradable azo-dye, Chem. Commun.,
14 (1998) 1493–1494.
- S.X. Zha, Y. Cheng, Y. Gao, Z.L. Chen, M. Megharaj, R. Naidu,
Nanoscale zero-valent iron as a catalyst for heterogeneous
Fenton oxidation of amoxicillin, Chem. Eng. J., 255 (2014)
141–148.
- F.L. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for
groundwater remediation and wastewater treatment: a review,
J. Hazard. Mater., 267 (2014) 194–205.
- C.R. Keenan, D.L. Sedlak, Factors affecting the yield of oxidants
from the reaction of nanoparticulate zero-valent iron and
oxygen, Environ. Sci. Technol., 42 (2008) 1262–1267.
- K. Hojeong, H.J. Hong, J. Juri, S.H. Kim, J.W. Wang, Degradation
of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI)
immobilized in alginate bead, J. Hazard. Mater., 176 (2010)
1038.
- J.H. Min, J.G. Hering, Arsenate sorption by Fe(III)-doped
alginate gels, Water Res., 32 (1998) 1544–1552.
- S.B. Hammouda, N. Adhoum, L. Monser, Synthesis of magnetic
alginate beads based on Fe3O4 nanoparticles for the removal of
3-methylindole from aqueous solution using Fenton process,
J. Hazard. Mater., 294 (2015) 128.
- L. Xu, J. Wang, Fenton-like degradation of 2,4-dichlorophenol
using Fe3O4, magnetic nanoparticles, Appl. Catal., B, 123–124
(2012) 117–126.
- H. Niu, Z. Di, Y. Meng, H. Cai, Fast defluorination and removal
of norfloxacin by alginate Fe@Fe3O4 core shell structured
nanoparticles, J. Hazard. Mater., 227 (2012) 195–203.
- E. Rosales, O. Iglesias, M. Pazos, M.A. Sanromán, Decolourisation
of dyes under electro-Fenton process using Fe alginate
gel beads, J. Hazard. Mater., 213 (2012) 369–377.
- Y. Dong, W. Dong, Y. Cao, Z. Han, Z. Ding, Preparation
and catalytic activity of Fe alginate gel beads for oxidative
degradation of azo dyes under visible light irradiation, Catal.
Today, 175 (2011) 346–355.
- S. Barreca, J.J.V. Colmenares, A. Pace, S. Orecchio, C. Pulgarin,
Neutral solar photo-Fenton degradation of 4-nitrophenol
on iron-enriched hybrid montmorillonite-alginate beads
(Fe-MABs), J. Photochem. Photobiol., A, 282 (2014) 33–40.
- C. Prabhu, S. Wanjari, S. Gawande, S. Das, N. Labhsetwar,
S. Kotwal, A. Puri, T. Satyanarayana, S. Rayalu, Immobilization
of carbonic anhydrase enriched microorganism on biopolymerbased
materials, J. Mol. Catal. B, 60 (2009) 13–21.
- M.A. Patrauchan, P.J. Oriel, Degradation of benzyldime
thylalkylammonium chloride by Aeromonas hydrophila sp.,
J. Appl. Microbiol., 94 (2003) 266–2729.
- L. Xu, J. Wang, A heterogeneous Fenton system with
nanoparticulate zerovalent iron for removal of 4-chloro-3-
methyl phenol, J. Hazard. Mater., 186 (2011) 256–264.
- A.A. Assadi, Effective heterogeneous electro-Fenton process for
the degradation of a malodorous compound, indole, using iron
loaded alginate beads as a reusable catalyst, Appl. Catal., B, 182
(2015) 47–58.
- I.A. Alaton, B.H. Gürsoy, Advanced oxidation of acid and
reactive dyes: effect of Fenton treatment aerobic, anoxic and
anaerobic processes, Dyes Pigm., 78 (2008) 117–130.
- X. Xu, Z. Zhao, X. Li, J. Gu, Chemical oxidative degradation of
methyl tert-butyl ether in aqueous solution by Fenton’s reagent,
Chemosphere, 55 (2004) 73–79.
- S.C. Xu, H.D. Zhou, H.Y. Wei, J. Lu, The pH dependence and
effects of the oxidative products of some aromatic compounds
in ozonation under irradiation, Ozone Sci. Eng., 11 (1989)
281–296.
- M.R. Carrasco-Díaz, E. Castillejos-López, A. Cerpa-Naranjo,
M.L. Rojas-Cervantes, On the textural and crystalline
properties of Fe-carbon xerogels. Application as Fenton-like
catalysts in the oxidation of paracetamol by H2O2, Microporous
Mesoporous Mater., 237 (2017) 282–293.
- V. Kavitha, K. Palanivelu, The role of ferrous ion in Fenton
and photo-Fenton processes for the degradation of phenol,
Chemosphere, 55 (2004) 1235–1243.
- S. Navalon, R. Martin, M. Alvaro, H. Garcia, Gold on diamond
nanoparticles as a highly efficient Fenton catalyst, Angew.
Chem. Int. Ed., 49 (2010) 8403–8407.
- M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of Acid
Blue 74 using FeZSM5 zeolite as a heterogeneous photo-Fenton
catalyst, Appl. Catal., B, 84 (2008) 9–15.
- Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly
efficient photocatalytic degradation of organic pollutants by
pani-modified TiO2 composite, J. Phys. Chem. C, 116 (2012)
5764–5772.
- D. Du, W. Shi, L. Wang, J. Zhang, Yolk-shell structured Fe3O4@
void@TiO2 as a photo-Fenton-like catalyst for the extremely
efficient elimination of tetracycline, Appl. Catal., B, 200 (2017)
484–492.
- C. Liang, H.W. Su, Identification of sulfate and hydroxyl
radicals in thermally activated persulfate, Ind. Eng. Chem. Res.,
48 (2009) 472–475.
- E.L. Loveira, P.S. Fiol, A. Senn, G. Curutchet, R. Candal,
M.I. Litter, TiO2-photocatalytic treatment coupled with
biological systems for the elimination of benzalkonium chloride
in water, Sep. Purif. Technol., 91 (2012) 108–116.
- N. Huang, T. Wang, W.L. Wang, Q.Y. Wu, A. Li, H.Y. Hu, UV/chlorine as an advanced oxidation process for the degradation
of benzalkonium chloride: synergistic effect, transformation
products and toxicity evaluation, Water Res., 114 (2017) 246–253.
- A.H. Khan, J. Kim, M. Sumarah, S.M. Macfie, M.B. Ray, Toxicity
reduction and improved biodegradability of benzalkonium
chlorides by ozone/hydrogen peroxide advanced oxidation
process, Sep. Purif. Technol., 185 (2017) 72–82.
- J.M. Hong, Y.F. Xia, Q. Zhang, B.Y. Chen, Oxidation of
benzalkonium chloride in aqueous solution by S2O82-/Fe2+
process: degradation pathway, and toxicity evaluation, J.
Taiwan Inst. Chem. Eng, 78 (2017) 230–239.
- Q. Zhang, Y.F. Xia, J.M. Hong, Mechanism and toxicity research
of benzalkonium chloride oxidation in aqueous solution
by H2O2/Fe2+ process, Environ. Sci. Pollut. Res., 23 (2016)
17822–17830.
- S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis,
G.E. Romanos, F.K. Katsaros, Metal-carboxylate interactions
in metal-alginate complexes studied with FTIR spectroscopy,
Carbohydr. Res., 345 (2010) 469–473.
- P.S. Suchithra, R. Carleer, S. Ananthakumar, J. Yperman,
A hybridization approach to efficient TiO2 photodegradation of
aqueous benzalkonium chloride, J. Hazard. Mater., 293 (2015)
122–130.
- J.B. Carbajo, A.L. Petre, R. Rosal, A. Berná, P. Letón, E. García-
Calvo, J.A. Perdigón Melón, Ozonation as pre-treatment
of activated sludge process of a wastewater containing
benzalkonium chloride and NiO nanoparticles, Chem. Eng. J.,
283 (2016) 740–749.