References

  1. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72 (2009) 126501–126530.
  2. A.K. Radzimska, T. Jesionowski, Zinc oxide – from synthesis to application: a review, Materials, 7 (2014) 2833–2881.
  3. Ing.J. Vymazal, Occurrence and chemistry of zinc in freshwaters – its toxicity and bioaccumulation with respect to algae: a review. Part 1: occurrence and chemistry of zinc in freshwaters, Clean Soil Air Water, 13 (1985) 627–654.
  4. P.Z. Ray, H.J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review, RSC Adv., 5 (2015) 29885–29907.
  5. X. Wang, W. Cai, S. Liu, G. Wang, Z. Wu, H. Zhao, ZnO hollow microspheres with exposed porous nanosheets surface: structurally enhanced adsorption towards heavy metal ions, Colloids Surf., A, 422 (2013) 199–205.
  6. S. Srivastava, Y. Srivastav, Removal of arsenic from waste water by using ZnO nano-materials, J. Mater. Sci. Eng. B, 3 (2013) 483–492.
  7. H. Hallaji, A.R. Keshtkar, M.A. Moosavian, A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution, J. Taiwan Inst. Chem. Eng., 46 (2015) 109–118.
  8. N. Singh, S.P. Singh, V. Gupta, H.K. Yadav, T. Ahuja, S.S. Tripathy, Rashmi, A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials, Environ. Prog. Sustainable Energy, 32 (2013) 1023–1029.
  9. J. Majeed, J. Ramkumar, S. Chandramouleeswaran, O.D. Jayakumar, A.K. Tyagi, Kinetic modeling: dependence of structural and sorption properties of ZnO-crucial role of synthesis, RSC Adv., 3 (2013) 3365–3373.
  10. X. Wang, W. Cai, Y. Lin, G. Wang, C. Liang, Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation, J. Mater. Chem., 20 (2010) 8582–8590.
  11. S.P. Hernandez, M. Chiappero, N. Russo, D. Fino, A novel ZnO-based adsorbent for biogas purification in H2 production systems, Chem. Eng. J., 176 (2011) 272–279.
  12. T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna, T.G. Venkatesha, Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles, Powder Technol., 217 (2012) 163–170.
  13. H. Xu, L. Li, H. Lv, X. Liu, H. Jiang, pH-dependent phosphatization of ZnO nanoparticles and its influence on subsequent lead sorption, Environ. Pollut., 208 (2016) 723–731.
  14. S.B. Khan, M.M. Rahman, H.M. Marwani, A.M. Asiri, K.A. Alamry, An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium, Nanoscale Res. Lett., 8 (2013) 377–384.
  15. M. Ates, J. Daniels, Z. Arslan, I.O. Farah, H.F. Rivera, Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity, Environ. Sci. Process. Impacts, 15 (2013) 225–233.
  16. S.W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27 (2011) 6059–6068.
  17. I.A. Mudunkotuwa, T. Rupasinghe, C.M. Wu, V.H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid, Langmuir, 28 (2012) 396–403.
  18. S. Bandyopadhyay, G. Plascencia-Villa, A. Mukherjee, C.M. Rico, M.J. Yacamán, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil, Sci. Total Environ., 515 (2015) 60–69.
  19. D. Xiong, T. Fang, L. Yu, X. Sima, W. Zhu, Effects of nanoscale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage, Sci. Total Environ., 409 (2011) 1444–1452.
  20. I.L. Hsiao, Y.J. Huang, Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells, Sci. Total Environ., 409 (2011) 1219–1228.
  21. R. Bacchetta, B. Maran, M. Marelli, N. Santo, P. Tremolada, Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach, Environ. Res., 148 (2016) 376–385.
  22. M. Li, D. Lin, L. Zhu, Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli, Environ. Pollut., 173 (2013) 97–102.
  23. X. Feng, Y. Yan, B. Wan, W. Li, D.P. Jaisi, L. Zheng, J. Zhang, F. Liu, Enhanced dissolution and transformation of ZnO nanoparticles: the role of inositol hexakisphosphate, Environ. Sci. Technol., 50 (2016) 5651–5660.
  24. J. Lv, S. Zhang, L. Luo, W. Han, J. Zhang, K. Yang, P. Christie, Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate, Environ. Sci. Technol., 46 (2012) 7215–7221.
  25. T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J.I. Zink, L. Madler, V. Castranova, A.E. Nel, Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos, ACS Nano, 5 (2011) 1223–1235.
  26. S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Madler, A.E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping, ACS Nano, 4 (2010) 15–29.
  27. H. Yin, P.S. Casey, Effects of iron or manganese doping of ZnO nanoparticles on their dissolution, ROS generation and cytotoxicity, RSC Adv., 4 (2014) 26149–26157.
  28. M. Ramasamy, M. Das, S.S. An, D.K. Yi, Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells, Int. J. Nanomed., 9 (2014) 3707–3718.
  29. R. Ma, C. Levard, F.M. Michel, G.E. Brown, Jr., G.V. Lowry, Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility, Environ. Sci. Technol., 47 (2013) 2527–2534.
  30. H. Yin, R. Chen, P. Casey, P.C. Ke, T.P. Davis, C. Chen, Reducing the cytotoxicity of ZnO nanoparticles by pre-formed protein corona in supplemented cell culture medium, RSC Adv., 5 (2015) 73963–73973.
  31. J. Zhang, R. Zhang, L.H. Zhao, S.Q. Sun, Synthesis of watersoluble γ-aminopropyl triethoxysilane-capped ZnO:MgO nanocrystals with biocompatibility, CrystEngComm, 14 (2012) 613–619.
  32. M. Luo, C. Shen, B.N. Feltis, L.L. Martin, A.E. Hughes, P.F.A. Wright, T.W. Turney, Reducing ZnO nanoparticle cytotoxicity by surface modification, Nanoscale, 6 (2014) 5791–5798.
  33. V. Merdzan, R.F. Domingos, C.E. Monteiro, M. Hadioui, K.J. Wilkinson, The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii, Sci. Total Environ., 488 (2014) 316–324.
  34. X. Jiang, M. Tong, R. Lu, H. Kim, Transport and deposition of ZnO nanoparticles in saturated porous media, Colloids Surf., A, 401 (2012) 29–37.
  35. R.A. Silva, D. Borja, G. Hwang, G. Hong, V. Gupta, S.A. Bradford, Y. Zhang, H. Kim, Analysis of the effects of natural organic matter in zinc beneficiation, J. Cleaner Prod., 168 (2017) 814–822.
  36. X. Jiang, X. Wang, M. Tong, H. Kim, Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm, Environ. Pollut., 174 (2013) 38–49.
  37. X. Jiang, M. Tong, H. Kim, Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media, J. Colloid Interface Sci., 386 (2012) 34–43.
  38. Y.S. Al-Awthan, M. Abu Zarga, S. Abdalla, Flavonoids content of Dracaena cinnabari resin and effects of the aqueous extract on isolated smooth muscle preparations, perfused heart, blood pressure and diuresis in the rat, Jordan J. Pharm. Sci., 3 (2010) 8–17.
  39. A. Alwashli, M. Al-Sobarry, Y. Cherrah, K. Alaoui, Antiinflammatory and analgesic effects of ethanol extract of Dracaena cinnabari balf, as endemic plant in Yemen, Int. J. Pharma Bio Sci., 3 (2012) 97–106.
  40. M. Masaoud, H. Ripperger, A. Porzel, G. Adam, Flavonoids of dragon’s blood from Dracaena cinnabari, Phytocher. Phytochem., 38 (1995) 745–749.
  41. R. Vesela, K. Marek, K. Ubik, K. Lunerova, V. Sklenar, V. Suchy, Dracophane, a metacyclophane derivative from the resin of Dracaena cinnabari balf, Phytochemistry, 61 (2002) 967–970.
  42. M.A. Amrani, A. Abu-Taleb, N. Remalli, M. Abdullah, V.V.S.S. Srikanth, N.K. Labhasetwar, Dragon’s blood-aided synthesis of Ag/Ag2O core/shell nanostructures and Ag/Ag2O decked multilayered graphene for efficient As(III) uptake from water and antibacterial activity, RSC Adv., 6 (2016) 44145–44153.
  43. Y. Wei, M. Guo, Zinc-binding sites on selected flavonoids, Biol. Trace Elem. Res., 161 (2014) 223–230.
  44. R.F. De Souza, W.F. De Giovani, Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids, Spectrochim. Acta, Part A, 61 (2005) 1985–1990.
  45. C. Lapouge, L. Dangleterre, J.P. Cornard, Spectroscopic and theoretical studies of the Zn(II) chelation with hydroxyflavones, J. Phys. Chem. A, 110 (2006) 12494–12499.
  46. J. Parellada, G. Suárez, M. Guinea, Inhibition of zinc metallopeptidases by flavonoids and related phenolic compounds: structure-activity relationships, J. Enzyme Inhib., 13 (1998) 347–359.
  47. L. Mira, M.T. Fernandez, M. Santos, R. Rocha, M.H. Florencio, K.R. Jennings, Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity, Free Radical Res., 36 (2002) 1199–2208.
  48. Y.S. Tarahovsky, Y.A. Kim, E.A. Yagolnik, E.N. Muzafarov, Flavonoid–membrane interactions: involvement of flavonoid–metal complexes in raft signalling, Biochim. Biophys. Acta, 1838 (2014) 1235–1246.
  49. M.E. Bodini, M.A.D. Valle, R. Tapia, F. Leighton, P. Berrios, Zinc catechin complexes in aprotic medium. Redox chemistry and interaction with superoxide radical anion, Polyhedron, 20 (2001) 1005–1009.
  50. Z. Dai, K. Liu, Y. Tang, X. Yang, J. Bao, J. Shen, A novel tetragonal pyramid-shaped porous ZnO nanostructure and its application in the biosensing of horseradish peroxidase, J. Mater. Chem., 18 (2008) 1919–1926.
  51. Y. Dong, C. Feng, P. Jiang, G. Wang, K. Li, H. Miao, Simple onepot synthesis of ZnO/Ag heterostructures and the application in visible-light-responsive photocatalysis, RSC Adv., 4 (2014) 7340–7346.
  52. D.H. Zhang, Z.H. Xue, Q.P. wang, The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering, J. Phys. D: Appl. Phys., 35 (2002) 2837–2840.
  53. A.K. Zak, R. Razali, W.H. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomed., 6 (2011) 1399–1403.
  54. D. Segets, J. Gradl, R.K. Taylor, V. Vassilev, W. Peukert, Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy, ACS Nano, 3 (2009) 1703–1710.
  55. K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method, Chem. Phys. Lett., 208 (2005) 409–413.
  56. N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, P. Nandy, Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity, RSC Adv., 5 (2015) 4993–5003.
  57. P. Zhang, F. Xu, A. Navrotsky, J.S. Lee, S. Kim, J. Liu, Surface enthalpies of nanophase ZnO with different morphologies, Chem. Mater., 19 (2007) 5687–5693.
  58. M. McDonald, I. Mila, A. Scalbert, Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation, J. Agric. Food Chem., 44 (1996) 599–606.
  59. Q. Liu, M. Zhang, Z.X. Fang, X.H. Rong, Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin, J. Sci. Food Agric., 94 (2014) 2547–2554.
  60. WHO, Guidelines for Drinking-Water Quality, 4th ed., World Health Organization, Geneva, 2011.
  61. N.R. Jana, H. Yu, E.M. Ali, Y. Zheng, J.Y. Ying, Controlled photostability of luminescent nanocrystalline ZnO solution for selective detection of aldehydes, Chem. Commun., 14 (2007) 1406–1408.
  62. T. Yoshida, Leaching of zinc oxide in acidic solution, Mater. Trans., 4 (2003) 2489–2493.
  63. Y. Han, D. Kim, G. Hwang, B. Lee, I. Eom, P.J. Kim, M. Tong, H. Kim, Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: influence of ionic strength and humic acid, Colloids Surf., A, 451 (2014) 7–15.
  64. A. Sedlak, W. Janusz, Specific adsorption of carbonate ions at the zinc oxide/electrolyte solution interface, Physicochem. Probl. Miner. Proc., 42 (2008) 57–66.
  65. T. Joseph, B. Dubey, E.A. McBean, A critical review of arsenic exposures for Bangladeshi adults, Sci. Total Environ., 528 (2015) 540–551.
  66. S. Lagergren, Zur theorie der sogenannten adsorption gelˆster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  67. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  68. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  69. Y. Liu, New insights into pseudo-second-order kinetic equation for adsorption, Colloids Surf., A, 320 (2008) 275–278.
  70. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  71. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constantpattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  72. H. Freundlich, Uber die Adsorption in Losungen, Z. Phys. Chem., 57 (1907) 385–470.