References

  1. D. Ellis, C. Bouchard, G. Lantagne, Removal of iron and manganese from groundwater by oxidation and microfiltration, Desalination, 130 (2007) 255–264.
  2. A. Alpatova, S. Verbych, M. Bryk, R. Nigmatullin, N. Hilal, Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation–ultrafiltration process, Sep. Purif. Technol., 40 (2004) 155–162.
  3. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration, Desalination, 315 (2013) 2–17.
  4. S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156 (2010) 11–24.
  5. J. Pérez-Ramírez, F. Kapteijn, J.C. Groen, A. Doménech, G. Mul, J.A. Moulijn, Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition, J. Catal., 214 (2003) 33–45.
  6. I.I. Ivanova, E.E. Knyazeva, Micro-Mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic application, Chem. Soc. Rev., 42 (2013) 3671–3688.
  7. M. Müller, G. Harvey, R. Prins, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR, Microporous Mesoporous Mater., 34 (2000) 135–147.
  8. R.M. Dessau, E.W. Valyocsik, N.H. Goeke, Aluminum zoning in ZSM-5 as revealed by selective silica removal, Zeolites, 12 (1992) 776–779.
  9. R. Le Van Mao, S.T. Le, D. Ohayon, F. Caillibot, L. Gelebart, G. Denes, Modification of the micropore characteristics of the desilicated ZSM-5 zeolite by thermal treatment, Zeolites, 19 (1997) 270–278.
  10. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi, M. Matsukata, Formation of uniform mesopore in ZSM-5 zeolite through treatment in alkaline solution, Chem. Lett., 29 (2000) 882–883.
  11. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Alkali-treatment technique – new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites, Appl. Catal., A, 219 (2001) 33–43.
  12. T. Suzuki, T. Okuhara, Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution, Microporous Mesoporous Mater., 43 (2001) 83–89.
  13. J.C. Groen, J. Pérez-Ramírez, L.A.A. Peffer, Formation of uniform mesoporous in ZSM-5 zeolite upon alkaline post treatment? Chem. Lett., 31 (2002) 94–95.
  14. P. Losch, T.C. Hoff, J.F. Kolb, C. Bernardon, J.P. Tessonnier, B. Louis, Mesoporous ZSM-5 zeolites in acid catalysis: topdown vs. bottom-up approach, Catalysts, 7 (2017) 225–243.
  15. K.P. de Jong, J. Zečević, H. Friedrich, P.E. de Jongh, M. Bulut, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts, Angew. Chem., Int. Ed., 49 (2010) 10074–10078.
  16. S. Wang, T. Dou, Y. Li, Y. Zhang, X. Li, Z. Yan, A novel method for the preparation of MOR/MCM-41 composite molecular, Catal. Commun., 6 (2005) 87–91.
  17. S.V. Konnov, I.I. Ivanova, O.A. Ponomareva, V.I. Zaikovskii, Hydroisomerization of n-alkanes over Pt-modified micro/ mesoporous materials obtained by mordenite recrystallization, Microporous Mesoporous Mater., 164 (2012) 222–231.
  18. I.A. Kasyanov, A.A. Maerle, I.I. Ivanova, V.I. Zaikovskii, Towards understanding of the mechanism of stepwise zeolite recrystallization into micro/mesoporous materials, J. Mater. Chem. A, 2 (2014) 16978–16988.
  19. V.V. Ordomsky, V.Y. Murzin, Y.V. Monakhova, Y.V. Zubavichus, E.E. Knyazeva, N.S. Nesterenko, I.I. Ivanova, Nature, strength and accessibility of acid sites in micro/mesoporous catalysts obtained by recrystallization of zeolite BEA, Microporous Mesoporous Mater., 105 (2007) 101–110.
  20. Y. Li, W. Zhang, X. Wang, Y. Zhang, T. Dou, K. Xie, Synthesis, characterization, and catalytic properties of a hydrothermally stable Beta/MCM-41 composite from well-crystallized zeolite Beta, J. Porous Mater., 15 (2008) 133–138.
  21. A. Gil, F.C.C. Assis, S. Albeniz, S.A. Korili, Removal of dyes from wastewaters by adsorption on pillared clays, Chem. Eng. J., 168 (2011) 1032–1040.
  22. F.C. Wu, P.-H. Wu, R.-L. Tseng, R.-S. Juang, Use of refusederived fuel waste for the adsorption of 4-chlorophenol and dyes from aqueous solution: equilibrium and kinetics, J. Taiwan Inst. Chem. Eng., 45 (2014) 2628–2639.
  23. K. Tarach, K. Góra-Marek, J. Tekla, K. Brylewska, J. Datka, K. Mlekodaj, W. Makowski, M.C. Igualada López, J. Martínez Triguero, F. Rey, Catalytic cracking performance of alkalinetreated zeolite Beta in the terms of acid sites properties and their accessibility, J. Catal., 312 (2014) 46–57.
  24. H. Kim, M.E. Lee, S. Kang, J.W. Chung, Thermodynamic analysis of phenol adsorption by powdered activated carbon, J. Korean Soc. Environ. Eng., 35 (2013) 220–225.
  25. Y.T. Kim, K.D. Jung, E.D. Park, Gas-phase dehydration of glycerol over ZSM-5 catalysts, Microporous Mesoporous Mater., 131 (2010) 28–36.