References
- P. Bansal, N. Bhullar, D. Sud, Studies on photodegradation of
malachite green using TiO2/ZnO photocatalyst, Desal. Wat.
Treat., 12 (2012) 108–113.
- X. Liu, T. Lv, Y. Liu, L. Pan, Z. Sun, TiO2–Au composite for
efficient UV photocatalytic reduction of Cr(VI), Desal. Wat.
Treat., 51 (2013) 3889–3895.
- Q. Han, Y. Wang, H. Yan, B. Gao, D. Ma, S. Sun, J. Ling, Y. Chu,
Photocatalysis of THM precursors in reclaimed water: the
application of TiO2 in UV irradiation, Desal. Wat. Treat., 57
(2016) 9136–9147.
- A. Mezni, N.B. Saber, M.M. Ibrahim, M. El-Kemary,
A. Aldalbahi, P. Feng, L. Samia Smiri, T. Altalhi, Facile synthesis
of highly thermally stable TiO2 photocatalysts, New J. Chem.,
41 (2017) 5021–5027.
- S. Ray, J.A. Lalman, Fabrication and characterization of an
immobilized titanium dioxide (TiO2) nanofiber photocatalyst,
Mater. Today, Proc., 3 (2016) 1582–1591.
- G. Tian, H. Fu, L. Jing, B. Xin, K. Pan, Preparation and
characterization of stable biphase TiO2 photocatalyst with high
crystallinity, large surface area, and enhanced photoactivity,
J. Phys. Chem. C, 112 (2008) 3083–3089.
- Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng,
Y. Cao, The design of TiO2 nanostructures (nanoparticle,
nanotube, and nanosheet) and their photocatalytic activity,
J. Phys. Chem. C, 118 (2014) 12727.
- J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide
materials – synthesis, properties and applications, Mater. Sci.
Eng., R, 52 (2006) 49–91.
- X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan,
Comparing graphene-TiO2 nanowire and graphene-TiO2
nanoparticle composite photocatalysts, ACS Appl. Mater. Interfaces,
4 (2012) 3944–3950.
- S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal,
K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2
nanotube composites with enhanced photocatalytic activity,
ACS Catal., 2 (2012) 949–956.
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris,
C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire
arrays for photoelectrochemical water splitting, Nano Lett., 11
(2011) 3026–3033.
- X. Kang, S. Chen, Photocatalytic reduction of methylene blue
by TiO2 nanotube arrays: effects of TiO2 crystalline phase,
J. Mater. Sci., 45 (2010) 2696–2702.
- M. Fathy, H. Hamad, A. El Hady Kashyout, Influence of
calcination temperatures on the formation of anatase TiO2 nano
rods with a polyol-mediated solvothermal method, RSC Adv.,
6 (2016) 7310–7316.
- T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara,
Formation of titanium oxide nanotube, Langmuir, 14 (1998)
3160–3163.
- Y. Tang, Y. Zhang, J. Deng, J. Wei, H.L. Tam, B.K. Chandran,
Z. Dong, Z. Chen, X. Chen, Mechanical force-driven growth
of elongated bending TiO2-based nanotubular materials for
ultrafast rechargeable lithium ion batteries, Adv. Mater., 26
(2014) 6111–6118.
- D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The
effect of hydrothermal conditions on the mesoporous structure
of TiO2 nanotubes, J. Mater. Chem., 14 (2004) 3370–3378.
- B.-M. Wen, C.-Y. Liu, Y. Liu, Solvothermal synthesis of ultralong
single-crystalline TiO2 nanowires, New J. Chem., 29 (2005) 969–971.
- S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible
light driven photoelectrochemical water oxidation on nitrogenmodified
TiO2 nanowires, Nano Lett., 12 (2012) 26–32.
- P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and
applications, Angew. Chem. Int. Ed., 50 (2011) 2904–2939.
- Y.V. Kolen’ko, K.A. Kovnir, A.I. Gavrilov, Hydrothermal synthesis
and characterization of nanorods of various titanates and titanium
dioxide, J. Phys. Chem. B, 110 (2006) 4030–4038.
- J.-N. Nian, H. Teng, Hydrothermal synthesis of single-crystalline
anatase TiO2 nanorods with nanotubes as the precursor, J. Phys.
Chem. B, 110 (2006) 4193–4198.
- Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, J. Zhai, Synthesis of
crystal-controlled TiO2 nanorods by a hydrothermal method:
rutile and brookite as highly active photocatalysts, J. Phys.
Chem. C, 119 (2015) 16905–16912.
- H.-L. Kuo, C.-Y. Kuo, C.-H. Liu, J.-H. Chao, C.-H. Lin, A
highly active bi-crystalline photocatalyst consisting of TiO2 (B)
nanotube and anatase particle for producing H2 gas from neat
ethanol, Catal. Lett., 113 (2007) 7.
- S. Ray, J.A. Lalman, N. Biswas, Using the Box-Benkhen technique
to statistically model phenol photocatalytic degradation by
titanium dioxide nanoparticles, Chem. Eng. J., 150 (2009) 15–24.
- D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light
photocatalytic performance inspired by bioadhesion, J. Phys.
Chem. C, 119 (2015) 5827–5835.
- D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic
activity and stability of Z-scheme Ag2CrO4-GO composite
photocatalysts for organic pollutant degradation, Appl. Catal.,
B, 164 (2015) 380–388.
- M. Nasr, R. Viter, C. Eid, R. Habchi, P. Miele, M. Bechelany,
Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers, New J. Chem., 41 (2016) 81–89.
- H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of
uniform nanosize rutile and anatase particles, Chem. Mater.,
7 (1995) 663–671.
- H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation
behavior during growth of nanocrystalline aggregates:
insights from TiO2, J. Phys. Chem. B, 104 (2000) 3481–3487.
- D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2
nanoparticles: anatase, brookite and rutile, Nanotechnology, 19
(2008) 145605.
- T.P. Feist, P.K. Davies, The soft chemical synthesis of TiO2 (B)
from layered titanates, J. Solid State Chem., 101 (1992) 275–295.
- M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Photocatalytic
properties of surface modified platinised TiO2: effects of particle
size and structural composition, Catal. Today, 129 (2007) 43–49.
- A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer
equation to estimate more accurately nano-crystallite size using
XRD, World J. Nano Sci. Eng., 02 (2012) 154–160.
- H. Luo, C. Wang, Y. Yan, Synthesis of mesostructured titania
with controlled crystalline framework, Chem. Mater., 15 (2003)
3841–3846.
- R. Lopez, R. Gomez, Band-gap energy estimation from diffuse
reflectance measurements on sol–gel and commercial TiO2:
a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
- J. Tao, T. Luttrell, M. Batzill, A two-dimensional phase of TiO2
with a reduced bandgap, Nat. Chem., 3 (2011) 296–300.
- W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2
and reduced graphene oxide as efficient photocatalysts
for hydrogen evolution, J. Phys. Chem. C, 115 (2011) 10694–10701.
- U. Diebold, Photocatalysts: closing the gap, Nat. Chem., 3 (2011)
271–272.
- L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao, W. Ruan,
Investigation on SERS of different phase structure TiO2
nanoparticles, J. Raman Spectrosc., 46 (2015) 287–292.
- S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins,
Enhancing visible light photo-oxidation of water with TiO2
nanowire arrays via cotreatment with H2 and NH3: synergistic
effects between Ti3+ and N, J. Am. Chem. Soc., 134 (2012) 3659–3662.
- L. Zhang, W. Zheng, H. Jiu, W. Zhu, G. Qi, Preparation of the
anatase/TiO2(B) TiO2 by self-assembly process and the high
photodegradable performance on RhB, Ceram. Int., 42 (2016)
12726–12734.
- S.S. Veeravalli, S.R. Chaganti, J.A. Lalman, D.D. Heath,
Optimizing hydrogen production from a switchgrass steam
exploded liquor using a mixed anaerobic culture in an upflow
anaerobic sludge blanket reactor, Int. J. Hydrogen Energy, 39
(2014) 3160–3175.
- S.R. Shanmugam, S.R. Chaganti, J.A. Lalman, D.D. Heath,
Statistical optimization of conditions for minimum H2
consumption in mixed anaerobic cultures: effect on
homoacetogenesis and methanogenesis, Int. J. Hydrogen
Energy, 39 (2014) 15433–15445.
- Z. Lai, M. Zhu, X. Yang, J. Wang, S. Li, Optimization of key
factors affecting hydrogen production from sugarcane bagasse
by a thermophilic anaerobic pure culture, Biotechnol. Biofuels,
7 (2014) 131–111.
- A. Reungsang, S. Pattra, S. Sittijunda, Optimization of key factors
affecting methane production from acidic effluent coming from
the sugarcane juice hydrogen fermentation process, Energies, 5
(2012) 4746–4757.
- M.A. Stephens, EDF statistics for goodness of fit and some
comparisons, J. Am. Stat. Assoc., 69 (1974) 730.
- D.C. Montgomery, Design and Analysis of Experiments, John
Wiley and Sons, Inc., Arizona State University, Arizona, 2017.