References
- M. El Ouardi, S. Qourzal, S. Alahiane, A. Assabbane, J. Douch,
Effective removal of nitrates ions from aqueous solution using
new clay as potential low-cost adsorbent, J. Encap. Adsorp. Sci.,
5 (2015) 178–190.
- P. Loganathan, S. Vignswaran, J. Kandasamy, Enhanced
removal of nitrate from water using surface modification of
adsorbents—a review, J. Environ. Manage., 131 (2013) 363–374.
- J. Luo, S. Guangren, J. Liu, G. Qian, Z. Ping Xu, Mechanism
of enhanced nitrate reduction via micro-electrolysis at the
powdered zero-valent iron/activated carbon interface, J. Colloid
Interface Sci., 435 (2014) 21–25.
- M. Chabani, A. Amrane, A. Bensmaili, Equilibrium sorption
isotherms for nitrate on resin amberlite IRA 400, J. Hazard.
Mater., 165 (2009) 27–33.
- D. Majumdar, Nitrate pollution of groundwater and associated
human health disorders, Ind. J. Environ. Health, 42 (2000)
28–39.
- G.R. Shaw, D.P. Moore, C. Garnett, Eutrophication and algal
blooms, Environ. Ecol. Chem., 2 (2003) 1–21.
- WHO, Guidelines for Drinking Water Quality, 3rd ed., WHO,
Geneva, 2008.
- U.E.P.A., USEPA National Primary and Secondary Drinking
Water Regulations, USEPA, USA, 2008.
- ISIRI, Institute of Standards and Industrial Research of Iran,
Drinking Water—Physical and Chemical Specifications, 5th ed.,
Tehran, 1053, 2009.
- M. Islam, P.C. Mishra, R. Patel, Physicochemical characterization
of hydroxyapatite and its application towards removal of nitrate
from water, J. Environ. Manage., 91 (2010) 1883–1891.
- S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Nitrate removal
from aqueous solutions by cross-linked chitosan beads
conditioned with sodium bisulfate, J. Hazard. Mater., 166 (2009)
508–513.
- N. Öztürk, T.E. Bektas, Nitrate removal from aqueous solution
by adsorption onto various materials, J. Hazard. Mater., 112
(2004) 155–162.
- S. Pourfadakari, N. Yusefi, A.H. Mahvi, Removal of Reactive Red
198 from aqueous solution by combined method multi-walled
carbon nanotubes and zero-valent iron: equilibrium, kinetics,
and thermodynamic, Chin. J. Chem. Eng., 24 (2016) 1448–1455.
- M.A. Baghapour, S. Pourfadakari, A.H. Mahvi, Investigation of
Reactive Red Dye 198 removal using multiwall carbon nanotubes
in aqueous solution, J. Ind. Eng. Chem., 20 (2014) 2921–2926.
- M.A. Baghapour, A.H. Mahvi, S. Pourfadakari, Thermodynamic
analysis of reactive red 198 removal from synthetic wastewater
by using multiwall carbon nanotubes, Health Scope, 2 (2013)
149–155.
- A. Takdastan, A.H. Mahvi, E.C. Lima, A.A. Babaei, G. Goudarzi,
A. Neisi, M. Heidari Farsani, M. Vosoughi, Preparation,
characterization, and application of activated carbon from lowcost
material for the adsorption of tetracycline antibiotic from
aqueous solutions, Water Sci. Technol., 74 (2016) 2349–2363.
- B. Kakavandi, J. Jafari, R.K. Rezaei, S. Nasseri, A. Ameri,
A. Esrafily, Synthesis and properties of Fe3O4-activated carbon
magnetic nanoparticles for removal of aniline from aqueous
solution equilibrium, kinetic and thermodynamic studies,
Iranian J. Environ. Health Sci. Eng., 10 (2013) 2–9.
- S. Pourfadakari, A.H. Mahvi, Kinetics and equilibrium studies
for removal of reactive red 198 from aqueous solutions using
zero valent iron powder, Health Scope, 3 (2014) 1–8.
- X. Zhao, J. Wang, F. Wu, Th. Wang, Removal of fluoride from
aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles,
J. Hazard. Mater., 173 (2010) 102–109.
- M.H. Do, N.H. Phan, Th.D. Nguyen, Activated carbon/Fe3O4
nanoparticle composite: fabrication, methyl orange removal
and regeneration by hydrogen peroxide, Chemosphere, 85
(2011) 1269–1279.
- Z. Liu, F.Sh. Zhang, R. Sasai, Arsenate removal from water
using Fe3O4 loaded activated carbon prepared from waste
biomass, J. Chem. Eng., 160 (2010) 57–62.
- Ch. Cai, H. Zhang, X. Zhong, L. Ho, Ultrasound enhanced
heterogeneous activation of peroxymonosulfate by a bimetallic
Fe–Co/SBA-15 catalyst for the degradation of Orange II in
water, J. Hazard. Mater., 283 (2015) 70–79.
- H. Yanagida, Y. Masubuchi, K. Minagawa, T. Ogata, J.-I. Takimoto,
K. Koyama, A reaction kinetics model of water sonolysis in the
presence of a spin-trap, Ultra Sonochem., 5 (1999) 133–139.
- H. Ghodbane, O. Hamdaoui, Degradation of Acid Blue 25
in aqueous media using 1700kHz ultrasonic irradiation:
ultrasound/Fe (II) and ultrasound/H2O2 combinations, Ultra
Sonochem., 16 (2009) 593–598.
- S. Ghodke, S. Sonawane, R. Gaikawad, K.C. Mohite, TiO2/nanoclay nanocomposite for phenol degradation in sonophotocatalytic
reactor, J. Chem. Eng., 90 (2012) 1153–1159.
- Y.L. Pang, A.Z. Abdullah, S. Bhatia, Review on sonochemical
methods in the presence of catalysts and chemical additives
for treatment of organic pollutants in wastewater, Desal. Wat.
Treat., 277 (2011) 1–14.
- V.H. Ranjithkumar, A.N. Hazeen, M. Thamilselvan, S. Vairam,
Magnetic activated carbon-Fe3O4 nanocomposites—synthesis
and applications in the removal of acid yellow dye 17 from
water, J. Nanosci. Nanotechnol., 14 (2014) 4949–4959.
- A. APHA, WEF, Standard Methods for Examination of Water
and Wastewater, APHA, Washington, DC, 2005.
- N. Jaafarzadeh, A. Takdastan, M. Heidari Farsani, N. Niknam,
M. Aalipour, M. Hadei, P. Bahrami, Biosorption of heavy metals
from aqueous solutions onto chitin, Int. J. Environ. Health Eng.,
4 (2015) 1–6.
- A.O. Dada, A.P. Olalekan, A.M. Olatunya, Langmuir,
Freundlich, Temkin and Dubinin–Radushkevich isotherms
studies of equilibrium sorption of Zn2+ unto phosphoric acid
modified rice husk, IOSR-JAC, 3 (2012) 38–45.
- S. Pourfadakari, S. Jorfi, M. Ahmadi, A. Takdastan, Experimental
data on adsorption of Cr(VI) from aqueous solution using
nanosized cellulose fibers obtained from rice husk, Data Brief,
15 (2017) 887–895.
- T.M. Elmorsi, Z.H. Mohamed, W. Shopak, A.M. Ismaiel, Kinetic
and equilibrium isotherms studies of adsorption of Pb(II) from
water onto natural adsorbent, J. Environ. Prot., 5 (2014) 1667–1681.
- G. Vijaya Kumar, R. Tamilarasan, M. Dharmendira Kumar,
Adsorption, kinetic, equilibrium and thermodynamic studies on
the removal of basic dye Rhodamine-B from aqueous solution
by the use of natural adsorbent perlite, J. Mater. Environ. Sci., 3
(2012) 157–170.
- S.S. Sivaprakash, S.K. Krishna, Comparative characteristic
study of agricultural waste activated carbon and AC/Fe3O4–nanoparticles, Int. J. Chem. Tech Res., 10 (2017) 957–963.
- N. Hidayah Abdullah, S. Kamyar, P. Moozarm Nia,
M. Etesami, E. Chan Abdullah, Electrocatalytic activity of
starch/Fe3O4/zeolite bionanocomposite for oxygen reduction
reaction, Arabian J. Chem., 2017 (2017) 1–10, doi: 10.1016/j.
arabjc.2017.10.014.
- S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, Superparamagnetic
Fe3O4 nanoparticles as catalysts for the catalytic oxidation of
phenolic and aniline compounds. J. Hazard. Mater., 167 (2009)
560–566.
- O.E. Gutierrez-Muniz, G. Rosales, E. Ordonez Regil, Synthesis,
characterization and adsorptive properties of carbon with iron
nanoparticles and iron carbide for the removal of As from
water, J. Environ. Manage., 114 (2013) 1–7.
- H.Y. Zhu, Y.Q. Fu, R. Jiang, J.H. Jiang, L. Xiao, G.M. Zeng,
S.L. Zhao, Y. Wang, Adsorption removal of congo red
onto magnetic cellulose/Fe3O4/activated carbon composite:
equilibrium, kinetic and thermodynamic studies, J. Chem. Eng.,
173 (2011) 494–502.
- S. Jorfi, S. Pourfadakari, N. Jaafarzadeh, R. Darvishi Cheshmeh
Soltani, H. Akbari, Adsorption of Cr(VI) by natural clinoptilolite
zeolite from aqueous solutions: isotherms and kinetics, J. Chem.
Technol., 19 (2017) 106–114.
- M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Enhanced
removal of Cr(VI) from aqueous solution using polypyrrole/
Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190 (2011)
381–390.
- X. Zhou, L.V. Bihong, Z. Zhou, W. Li, G. Jing, Evaluation
of highly active nanoscale zero-valent iron coupled with
ultrasound for chromium(VI) removal, J. Chem. Eng., 281 (2015)
155–163.
- Y.H. Liou, Sh. Lien Lo, W.H. Kuan, Ch.J. Lin, Effect of precursor
concentration on the characteristics of nanoscale zerovalent
iron and its reactivity of nitrate, Water Res., 40 (2006) 2485–2492.
- A. Morad, P. Najafi Moghadam, R. Hasanzadehb, M. Sillanpa,
Chelating magnetic nanocomposite for the rapid removal of
Pb(II) ions from aqueous solutions: characterization, kinetic,
isotherm and thermodynamic studies, RSC Adv., 7 (2017)
433–448.
- S. Sepehri, M. Hei, Nitrate removal from aqueous solution
using natural zeolite-supported zero-valent iron nanoparticles,
Soil Water Res., 9 (2014) 224–232.
- M. Kashefi Asl, A.H. Hasani, E. Naserkhaki, Evaluation of nitrate
removal from water using activated carbon and clinoptilolite by
adsorption method, Biosci. Biotechnol. Res. Asia, 13 (2015).
- M. Arbabi, S. Hemati, Z. Shamsizadeh, A. Arbabi, Nitrate
removal from aqueous solution by almond shells activated with
magnetic nanoparticles, Desal. Wat. Treat., 80 (2017) 344–351.
- A. Mikhak, A. Sohrabi, M.Z. Kassaee, M. Feizian, M. Najafi
Disfani, Removal of nitrate and phosphate from water by
clinoptilolite-supported iron hydroxide nanoparticle, Arab.
J. Sci. Eng., 42 (2017) 2433–2439.
- Ö. Nese, K.T. Ennil, A kinetic study of nitrite adsorption onto
sepiolite and powdered activated carbon, Desalination, 223
(2008) 174–179.
- S.S. Tahir, N. Rauf, Thermodynamic studies of Ni(II) adsorption
onto bentonite from aqueous solution, J. Chem. Thermodyn., 35
(2003) 2003–2009.
- A.F. Freitas, M.F. Mendes, G.L.V. Coelho, Thermodynamic
study of fatty acids adsorption on different adsorbents, J. Chem.
Thermodyn., 39 (2007) 1027–1037.
- M. Kara, H. Yuzer, E. Sabah, M.S. Celik, Adsorption of cobalt from
aqueous solutions onto sepiolite. Water Res., 37 (2003) 224–232.