References
- V.K. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh,
R. Shahryari-Ghoshekandi, A.S.H. Makhlouf, M. Goodarzi,
A. Garshasbi, Study on the removal of heavy metal ions from
industry waste by carbon nanotubes: effect of the surface
modification: a review, Crit. Rev. Environ. Sci. Technol., 46
(2016) 93–118.
- B. He, Z.J. Yun, J.B. Shi, Research progress of heavy metal
pollution in China: sources, analytical methods, status and
toxicity, Chin. Sci. Bull., 58 (2013) 134–140.
- H. Javadian, Adsorption performance of suitable nanostructured
novel composite adsorbent of poly(N-methylaniline) for
removal of heavy metal from aqueous solutions, J. Ind. Eng.
Chem., 20 (2014) 4344–4352.
- R.W. Peters, Chelant extraction of heavy metals from
contaminated soils, J. Hazard. Mater., 66 (1999) 151–210.
- K. Olie, P.L. Vermeulen, O. Hutzinger, Chlorodibenzo-p-dioxins
and chlorodib-enzofurans are trace components of fly ash and
flue gas of some municipal incinerators in the Netherlands,
Chemosphere, 61 (1977) 455–459.
- F.L. Fu, Q. Wang, Removal of heavy metal ions from
wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
- M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. ALOthman,
Adsorption kinetics, isotherms and thermodynamic studies for
Hg2+ adsorption from aqueous medium using alizarin red-Sloaded
amberlite IR4-400 resin, Desal. Wat. Treat., 57 (2016)
18551–18559.
- K. Chithra, K. Dhivya, Modification and characterization of
solid waste: an effective adsorbent for heavy metal removal,
Desal. Wat. Treat., 67 (2017) 168–177.
- J. Ayala, F. Blanco, P. Garcia, P. Rodriguez, J. Sancho, Asturian
fly ash as a heavy metals removal material, Fuel, 77 (1998)
1147–1154.
- S.S. Banerjee, R.V. Jayaram, M.V. Joshi, Removal of nickel (II)
and zinc (II) from wastewater using fly ash and impregnated fly
ash, Sep. Sci. Technol., 38 (2003) 1015–1032.
- H.A. Asmaly, Ihsanullah, B. Abussaud, T.A. Saleh, T. Laoui, V.K.
Gupta, M.A. Atieh, Adsorption of phenol on aluminum oxide
impregnated fly ash, Desal. Wat. Treat., 57 (2016) 6801–6808.
- C.J. An, S.Q. Yang, G.H. Huang, S. Zhao, P. Zhang, Y. Yao,
Removal of sulfonated humic acid from aqueous phase by
modified coal fly ash waste: equilibrium and kinetic adsorption
studies, Fuel, 165 (2016) 264–271.
- S.A. Bernal, J.L. Provis, B. Walkley, R.S. Nicolas, J.D. Gehman,
D.G. Brice, A.R. Kilcullen, P. Duxson, J.S.J. van Deventer, Gel
nanostructure in alkali-activated binders based on slag and fly
ash, and effects of accelerated carbonation, Cement Concrete
Res., 53 (2013) 127–144.
- K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal
ions in wastewater by zeolite 4A and residual products from
recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.
- B.P. Kelleher, M.N. O’Callaghan, M.J. Leahy, T.F. O’Dwyer,
J.J. Leahy, The use of fly ash from the combustion of poultry
litter for the adsorption of chromium (III) from aqueous
solution, J. Chem. Technol. Biotechnol., 77 (2002) 1212–1218.
- M. Visa, A.M. Chelaru, Hydrothermally modified fly ash
for heavy metals and dyes removal in advanced wastewater
treatment, Appl. Surf. Sci., 303 (2014) 14–22.
- Z.A. AL-Othman, R. Ali, M. Naushad, Hexavalent chromium
removal from aqueous medium by activated carbon prepared
from peanut shell: adsorption kinetics, equilibrium and
thermodynamics studies, Chem. Eng. J., 184 (2012) 238–247.
- Z.A. AL-Othman, M. Naushad, R. Ali, Kinetics, equilibrium
isotherm and thermodynamic studies of Cr(VI) adsorption
onto low-cost adsorbent developed from peanut shell activated
with phosphoric acid, Environ. Sci. Pollut. Res., 20 (2013)
3351–3365.
- M. Naushad, Z.A. ALOthman, M.M. Alam, M.R. Awual,
G.E. Eldesoky, M. Islam, Synthesis of sodium dodecyl sulfatesupported
nanocomposite cation exchanger: removal and
recovery of Cu2+ from synthetic, pharmaceutical and alloy
samples, J. Iran. Chem. Soc., 12 (2015) 1677–1686.
- M. Naushad, Z.A. ALOthman, M.R. Awual, M.M. Alam,
G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic
studies for the adsorption of Pb2+ and Hg2+ metal
ions from aqueous medium using Ti(IV) iodovanadate cation
exchanger, Ionics, 21 (2015) 2237–2245.
- J. Pizarro, X. Castillo, S. Jara, C. Ortiz, P. Navarro, H. Cid,
H. Rioseco, D. Barros, N. Belzile, Adsorption of Cu2+ on coal
fly ash modified with functionalized mesoporous silica, Fuel,
156 (2015) 96–102.
- A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M.N. Azevedo,
M. Pires, Synthesis of zeolite Na-P1 under mild conditions
using Brazilian coal fly ash and its application in wastewater
treatment, Fuel, 139 (2015) 59–67.
- J. Hizal, E. Tutem, K. Guclu, M. Hugul, S. Ayhan, R. Apak,
F. Kilinckale, Heavy metal removal from water by red mud and
coal fly ash: an integrated adsorption-solidification/stabilization
process, Desal. Wat. Treat., 51 (2013) 37–39.
- M. Izquierdo, X. Querol, Leaching behavior of elements from
coal combustion fly ash: an overview, Int. J. Coal Geol., 94
(2012) 54–66.
- H.C. Tao, T. Lei, G. Shi, X.N. Sun, X.Y. Wei, L.J. Zhang, W.M. Wu,
Removal of heavy metals from fly ash leachate using combined
bioelectrochemical systems and electrolysis, J. Hazard. Mater.,
264 (2014) 1–7.
- B. Nowwak, P. Aschenbrenner, F. Winter, Heavy metal removal
from sewage sludge ash and municipal solid waste fly ash – a
comparison, Fuel Process. Technol., 105 (2013) 195–201.
- L. Giraldo, A. Erto, J.C. Moreno-Pirajan, Magnetite nanoparticles
for removal of heavy metals from aqueous solutions: synthesis
and characterization, Adsorption, 19 (2013) 465–474.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad,
Z.A. ALOthman, S.M. Alshehri, Synthesis and characterization
of Fe3O4@TSC nanocomposite: highly efficient removal of
toxic metal ions from aqueous medium, RSC Adv., 6 (2016)
22679–22689.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan,
Z.A. ALOthman, Adsorptive removal of toxic dye using Fe3O4-TSC nanocomposite: equilibrium, kinetic, and thermodynamic
studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad,
Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Efficient removal
of toxic metal ions from wastewater using a recyclable
nanocomposite: a study of adsorption parameters and interaction
mechanism, J. Cleaner Prod., 156 (2017) 426–436.
- M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami,
S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous
carbon as efficient adsorbent for the removal of highly toxic
metal ion from aqueous medium, Chem. Eng. J., 330 (2017)
1351–1360.
- A.A. Alqadami, M. Naushad, Z.A. ALOthman, A.A. Ghfar,
Novel metal-organic framework (MOF) based composite
materials for the sequestration of U(VI) and Th(IV) metal ions
from aqueous environment, ACS Appl. Mater. Interfaces, 9
(2017) 36026–36037.
- A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler,
A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of
magnetic biochar supported g-C3N4/FeVO4 for solar powered
degradation of noxious pollutants-Synergism of adsorption,
photocatalysis and photo-ozonation, J. Cleaner Prod., 165 (2017)
431–451.
- A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb,
M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic
BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and
solar powered degradation of the sulfamethoxazole from
aqueous environment, Chem. Eng. J., 334 (2018) 462–478.
- Z.S. Chen, J. Wang, Z.X. Pu, Y.S. Zhao, D.H. Jia, H.X.
Chen, T. Wen, B.W. Hu, A. Alsaedi, T. Hayat, X.K. Wang,
Synthesis of magnetic Fe3O4/CFA composites for the efficient
removal of U(VI) from wastewater, Chem. Eng. J., 320 (2017)
448–457.
- R.S. Blissett, N.A. Rowson, A review of the multi-component
utilisation of coal fly ash, Fuel, 97 (2012) 1–23.
- S.O. Bada, J.H. Potgieter, A.S. Afolabi, Kinetics studies of
adsorption and desorption of South African fly ash for some
phenolic compounds, Part. Sci. Technol., 31 (2013) 1–9.
- S.P. Mishra, Adsorption-desorption of heavy metal ions, Curr.
Sci., 107 (2014) 601–612.
- E. Pehlivan, S. Cetin, Application of fly ash and activated carbon
in the removal of Cu2+ and Ni2+ ions from aqueous solutions,
Energy Sources Part A, 30 (2008) 1153–1165.
- T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application
of response surface methodology (RSM) for optimization
of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous
solution using microwaved olive stone activated carbon,
J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
- M. Tuzen, K.O. Saygi, M. soylak, Solid phase extraction of
heavy metal ions in environmental samples on multiwalled
carbon nanotubes, J. Hazard. Mater., 152 (2008) 632–639.
- Q. Li, J. Zhai, W. Zhang, M. Wang, J. Zhou, Kinetic studies of
adsorption of Pb(II), Cr(III),and Cu(III) from aqueous solution
by sawdust and modified peanut husk, J. Hazard. Mater., 141
(2007) 163–167.
- A. Nusssinovitch, O. Dagan, Hydrocolloid liquid-core capsules
for the removal of heavy-metal cations from water, J. Hazard.
Mater., 299 (2015) 122–131.
- P. Tan, J. Sun, Y.Y. Hu, Z. Fang, Q. Bi, Y.C. Chen, J.H. Cheng,
Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal
solutions on graphene oxide membranes, J. Hazard. Mater., 297
(2015) 251–260.
- K. Wang, Y.-X. Yu, G.-H. Gao, Density functional study on the
structural and thermodynamic properties of aqueous DNA electrolyte
solution in the framework of cell model, J. Chem.
Phys., 128 (2008) 185101.
- B. Peng, Y.-X. Yu, Ion distributions, exclusion coefficients,
and separation factors of electrolytes in a charged cylindrical
nanopore: a partially perturbative density functional theory
study, J. Chem. Phys., 131 (2009) 134703.
- Y. Xin, Y.-X. Zheng, Y.-X. Yu, Density functional theory study
on ion adsorption and electroosmotic flow in a membrane with
charged cylindrical pores, Mol. Phys., 114 (2016) 2328–2336.
- L. Hidmi, M. Edwards, Role of temperature and pH in Cu(OH)2
solubility, Environ. Sci. Technol., 33 (1999) 2607–2610.
- J.W. Boclair, P.S. Braterman, J.P. Jiang, S.W. Lou, F. Yarberry,
Layered double hydroxide stability. 2. Formation of Cr(III)-
containing layered double hydroxides directly from solution,
Chem. Mater., 11 (1999) 303–307.
- S.V. Mattigod, D. Rai, A.R. Felmy, L.F. Rao, Solubility and
solubility product of crystalline Ni(OH)2, J. Solution Chem., 26
(1997) 391–403.
- R.A. Robinson, R.H. Stokes, Tables of osmotic and activity
coefficients of electrolytes in aqueous solution at 25°C, Trans.
Faraday Soc., 45 (1949) 612–624.
- J.-F. Lu, Y.-X. Yu, Y.-G. Li, Modification and application of the
mean spherical approximation method, Fluid Phase Equilibria,
85 (1993) 81–100.
- Y.-X. Yu, G.-H. Gao, Y.-G. Li, surface tension for aqueous
electrolyte solutions by the modified mean spherical
approximation, Fluid Phase Equilibria, 173 (2000) 23–38.
- C.L. Massocatto, M. de Andrade, A.C. Honorato, J. Caetano,
C.R.T. Tarley, A.G. Junior, N.B. Colauto, G.A.L. Colauto,
D.C. Dragunski, Biosorption of Pb2+, Cr3+, and Cu2+ by peach
palm sheath modified colonized by Agaricus blazei, Desal. Wat.
Treat., 57 (2016) 19927–19938.
- M. Ceglowski, G. Schroeder, Preparation of porous resin with
Schiff base chelating groups for removal of heavy metal ions
from aqueous solutions, Chem. Eng. J., 263 (2015) 402–411.
- Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H.
Ramos, S. Trevino, C. Tamez, A. Martinez, T. Eubanks, J.G.
Parsons, Thermodynamics, kinetics, and activation energy
studies of the sorption of chromium (III) and chromium (VI) to
a Mn3O4 nanomaterial, Chem. Eng. J., 254 (2014) 374–383.