References

  1. V.K. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A.S.H. Makhlouf, M. Goodarzi, A. Garshasbi, Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review, Crit. Rev. Environ. Sci. Technol., 46 (2016) 93–118.
  2. B. He, Z.J. Yun, J.B. Shi, Research progress of heavy metal pollution in China: sources, analytical methods, status and toxicity, Chin. Sci. Bull., 58 (2013) 134–140.
  3. H. Javadian, Adsorption performance of suitable nanostructured novel composite adsorbent of poly(N-methylaniline) for removal of heavy metal from aqueous solutions, J. Ind. Eng. Chem., 20 (2014) 4344–4352.
  4. R.W. Peters, Chelant extraction of heavy metals from contaminated soils, J. Hazard. Mater., 66 (1999) 151–210.
  5. K. Olie, P.L. Vermeulen, O. Hutzinger, Chlorodibenzo-p-dioxins and chlorodib-enzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands, Chemosphere, 61 (1977) 455–459.
  6. F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  7. M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. ALOthman, Adsorption kinetics, isotherms and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-Sloaded amberlite IR4-400 resin, Desal. Wat. Treat., 57 (2016) 18551–18559.
  8. K. Chithra, K. Dhivya, Modification and characterization of solid waste: an effective adsorbent for heavy metal removal, Desal. Wat. Treat., 67 (2017) 168–177.
  9. J. Ayala, F. Blanco, P. Garcia, P. Rodriguez, J. Sancho, Asturian fly ash as a heavy metals removal material, Fuel, 77 (1998) 1147–1154.
  10. S.S. Banerjee, R.V. Jayaram, M.V. Joshi, Removal of nickel (II) and zinc (II) from wastewater using fly ash and impregnated fly ash, Sep. Sci. Technol., 38 (2003) 1015–1032.
  11. H.A. Asmaly, Ihsanullah, B. Abussaud, T.A. Saleh, T. Laoui, V.K. Gupta, M.A. Atieh, Adsorption of phenol on aluminum oxide impregnated fly ash, Desal. Wat. Treat., 57 (2016) 6801–6808.
  12. C.J. An, S.Q. Yang, G.H. Huang, S. Zhao, P. Zhang, Y. Yao, Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: equilibrium and kinetic adsorption studies, Fuel, 165 (2016) 264–271.
  13. S.A. Bernal, J.L. Provis, B. Walkley, R.S. Nicolas, J.D. Gehman, D.G. Brice, A.R. Kilcullen, P. Duxson, J.S.J. van Deventer, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cement Concrete Res., 53 (2013) 127–144.
  14. K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.
  15. B.P. Kelleher, M.N. O’Callaghan, M.J. Leahy, T.F. O’Dwyer, J.J. Leahy, The use of fly ash from the combustion of poultry litter for the adsorption of chromium (III) from aqueous solution, J. Chem. Technol. Biotechnol., 77 (2002) 1212–1218.
  16. M. Visa, A.M. Chelaru, Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment, Appl. Surf. Sci., 303 (2014) 14–22.
  17. Z.A. AL-Othman, R. Ali, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamics studies, Chem. Eng. J., 184 (2012) 238–247.
  18. Z.A. AL-Othman, M. Naushad, R. Ali, Kinetics, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid, Environ. Sci. Pollut. Res., 20 (2013) 3351–3365.
  19. M. Naushad, Z.A. ALOthman, M.M. Alam, M.R. Awual, G.E. Eldesoky, M. Islam, Synthesis of sodium dodecyl sulfatesupported nanocomposite cation exchanger: removal and recovery of Cu2+ from synthetic, pharmaceutical and alloy samples, J. Iran. Chem. Soc., 12 (2015) 1677–1686.
  20. M. Naushad, Z.A. ALOthman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  21. J. Pizarro, X. Castillo, S. Jara, C. Ortiz, P. Navarro, H. Cid, H. Rioseco, D. Barros, N. Belzile, Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica, Fuel, 156 (2015) 96–102.
  22. A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M.N. Azevedo, M. Pires, Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 139 (2015) 59–67.
  23. J. Hizal, E. Tutem, K. Guclu, M. Hugul, S. Ayhan, R. Apak, F. Kilinckale, Heavy metal removal from water by red mud and coal fly ash: an integrated adsorption-solidification/stabilization process, Desal. Wat. Treat., 51 (2013) 37–39.
  24. M. Izquierdo, X. Querol, Leaching behavior of elements from coal combustion fly ash: an overview, Int. J. Coal Geol., 94 (2012) 54–66.
  25. H.C. Tao, T. Lei, G. Shi, X.N. Sun, X.Y. Wei, L.J. Zhang, W.M. Wu, Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis, J. Hazard. Mater., 264 (2014) 1–7.
  26. B. Nowwak, P. Aschenbrenner, F. Winter, Heavy metal removal from sewage sludge ash and municipal solid waste fly ash – a comparison, Fuel Process. Technol., 105 (2013) 195–201.
  27. L. Giraldo, A. Erto, J.C. Moreno-Pirajan, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization, Adsorption, 19 (2013) 465–474.
  28. A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z.A. ALOthman, S.M. Alshehri, Synthesis and characterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium, RSC Adv., 6 (2016) 22679–22689.
  29. A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan, Z.A. ALOthman, Adsorptive removal of toxic dye using Fe3O4-TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
  30. A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism, J. Cleaner Prod., 156 (2017) 426–436.
  31. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  32. A.A. Alqadami, M. Naushad, Z.A. ALOthman, A.A. Ghfar, Novel metal-organic framework (MOF) based composite materials for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, ACS Appl. Mater. Interfaces, 9 (2017) 36026–36037.
  33. A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis and photo-ozonation, J. Cleaner Prod., 165 (2017) 431–451.
  34. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of the sulfamethoxazole from aqueous environment, Chem. Eng. J., 334 (2018) 462–478.
  35. Z.S. Chen, J. Wang, Z.X. Pu, Y.S. Zhao, D.H. Jia, H.X. Chen, T. Wen, B.W. Hu, A. Alsaedi, T. Hayat, X.K. Wang, Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater, Chem. Eng. J., 320 (2017) 448–457.
  36. R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel, 97 (2012) 1–23.
  37. S.O. Bada, J.H. Potgieter, A.S. Afolabi, Kinetics studies of adsorption and desorption of South African fly ash for some phenolic compounds, Part. Sci. Technol., 31 (2013) 1–9.
  38. S.P. Mishra, Adsorption-desorption of heavy metal ions, Curr. Sci., 107 (2014) 601–612.
  39. E. Pehlivan, S. Cetin, Application of fly ash and activated carbon in the removal of Cu2+ and Ni2+ ions from aqueous solutions, Energy Sources Part A, 30 (2008) 1153–1165.
  40. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
  41. M. Tuzen, K.O. Saygi, M. soylak, Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes, J. Hazard. Mater., 152 (2008) 632–639.
  42. Q. Li, J. Zhai, W. Zhang, M. Wang, J. Zhou, Kinetic studies of adsorption of Pb(II), Cr(III),and Cu(III) from aqueous solution by sawdust and modified peanut husk, J. Hazard. Mater., 141 (2007) 163–167.
  43. A. Nusssinovitch, O. Dagan, Hydrocolloid liquid-core capsules for the removal of heavy-metal cations from water, J. Hazard. Mater., 299 (2015) 122–131.
  44. P. Tan, J. Sun, Y.Y. Hu, Z. Fang, Q. Bi, Y.C. Chen, J.H. Cheng, Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes, J. Hazard. Mater., 297 (2015) 251–260.
  45. K. Wang, Y.-X. Yu, G.-H. Gao, Density functional study on the structural and thermodynamic properties of aqueous DNA electrolyte solution in the framework of cell model, J. Chem. Phys., 128 (2008) 185101.
  46. B. Peng, Y.-X. Yu, Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study, J. Chem. Phys., 131 (2009) 134703.
  47. Y. Xin, Y.-X. Zheng, Y.-X. Yu, Density functional theory study on ion adsorption and electroosmotic flow in a membrane with charged cylindrical pores, Mol. Phys., 114 (2016) 2328–2336.
  48. L. Hidmi, M. Edwards, Role of temperature and pH in Cu(OH)2 solubility, Environ. Sci. Technol., 33 (1999) 2607–2610.
  49. J.W. Boclair, P.S. Braterman, J.P. Jiang, S.W. Lou, F. Yarberry, Layered double hydroxide stability. 2. Formation of Cr(III)- containing layered double hydroxides directly from solution, Chem. Mater., 11 (1999) 303–307.
  50. S.V. Mattigod, D. Rai, A.R. Felmy, L.F. Rao, Solubility and solubility product of crystalline Ni(OH)2, J. Solution Chem., 26 (1997) 391–403.
  51. R.A. Robinson, R.H. Stokes, Tables of osmotic and activity coefficients of electrolytes in aqueous solution at 25°C, Trans. Faraday Soc., 45 (1949) 612–624.
  52. J.-F. Lu, Y.-X. Yu, Y.-G. Li, Modification and application of the mean spherical approximation method, Fluid Phase Equilibria, 85 (1993) 81–100.
  53. Y.-X. Yu, G.-H. Gao, Y.-G. Li, surface tension for aqueous electrolyte solutions by the modified mean spherical approximation, Fluid Phase Equilibria, 173 (2000) 23–38.
  54. C.L. Massocatto, M. de Andrade, A.C. Honorato, J. Caetano, C.R.T. Tarley, A.G. Junior, N.B. Colauto, G.A.L. Colauto, D.C. Dragunski, Biosorption of Pb2+, Cr3+, and Cu2+ by peach palm sheath modified colonized by Agaricus blazei, Desal. Wat. Treat., 57 (2016) 19927–19938.
  55. M. Ceglowski, G. Schroeder, Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions, Chem. Eng. J., 263 (2015) 402–411.
  56. Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H. Ramos, S. Trevino, C. Tamez, A. Martinez, T. Eubanks, J.G. Parsons, Thermodynamics, kinetics, and activation energy studies of the sorption of chromium (III) and chromium (VI) to a Mn3O4 nanomaterial, Chem. Eng. J., 254 (2014) 374–383.