References
- G.Z. Kyzas, Green Adsorbents. Bentham Science Publishers,
United Arab Emirates, 2015.
- G.Z. Kyzas, Coffee Wastes as Adsorbents, C.N. Foster, Ed.,
Agricultural Wastes: Characteristics, Types and Management,
Noc, New York, USA, 2015, pp. 215–229.
- J.R. Perrich, Activated Carbon Adsorption for Wastewater
Treatment, CRC Press, Boca Raton, FL, 1981.
- J.S. Mattson, H.B. Mark, Activated Carbon: Surface Chemistry
and Adsorption from Solution, Marcel Dekker, New York, 1971.
- R.C. Bansal, M. Goyal, Activated Carbon Adsorption. CRC
Press, Taylor & Francis, Boca Raton, FL, USA, 2005.
- R. Mailler, J. Gasperi, Y. Coquet, S. Deshayes, S. Zedek, C. Cren-
Olivé, N. Cartiser, V. Eudes, A. Bressy, E. Caupos, R. Moilleron,
G. Chebbo, V. Rocher, Study of a large scale powdered activated
carbon pilot: removals of a wide range of emerging and priority
micropollutants from wastewater treatment plant effluents,
Water Res., 72 (2015) 315–330.
- I. Anastopoulos, G.Z. Kyzas, Agricultural peels for dye
adsorption: a review of recent literature, J. Mol. Liq., 200 (2014)
381–389.
- I. Anastopoulos, G.Z. Kyzas, Progress in batch biosorption of
heavy metals onto algae, J. Mol. Liq., 209 (2015) 77–86.
- I. Anastopoulos, G.Z. Kyzas, Composts as biosorbents for
decontamination of various pollutants: a review, Water Air
Soil Pollut., 226 (2015) 61.
- E.A. Deliyanni, G.Z. Kyzas, K.S. Triantafyllidis, K.A. Matis,
Activated carbons for the removal of heavy metal ions: a
systematic review of recent literature focused on lead and
arsenic ions, Open Chem., 13 (2015) 699–708.
- G.Z. Kyzas, A decolorization technique with spent “greek
coffee” grounds as zero-cost adsorbents for industrial textile
wastewaters, Materials, 5 (2012) 2069–2087.
- G.Z. Kyzas, Commercial coffee wastes as materials for
adsorption of heavy metals from aqueous solutions, Materials,
5 (2012) 1826–1840.
- G.Z. Kyzas, E.A. Deliyanni, Modified activated carbons from
potato peels as green environmental-friendly adsorbents for the
treatment of pharmaceutical effluents, Chem. Eng. Res. Des., 97
(2015) 135–144.
- G.Z. Kyzas, E.A. Deliyanni, N.K. Lazaridis, Magnetic
modification of microporous carbon for dye adsorption,
J. Colloid Interface Sci., 430 (2014) 166–173.
- G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons
produced by pyrolysis of waste potato peels: cobalt ions
removal by adsorption, Colloid Surf. A., 490 (2016) 74–83.
- I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos,
G.Z. Kyzas, A review for coffee adsorbents, J. Mol. Liq., 229
(2017) 555–565.
- M.M. Koutlemani, P.Mavros, A.I. Zouboulis, K.A. Matis,
Recovery of Co2+ ions from aqueous solutions by froth flotation,
Sep. Sci. Technol., 29 (1994) 867–886.
- N. Barrak, R. Mannai, M. Zaidi, S. Achour, M. Kechida,
A.N. Helal, Optimization of novacron blue 4R (NB4R) removal
by adsorption process on activated carbon using response
surface methodology, Desal. Wat. Treat., 104 (2018) 346–353.
- L. Daddi Oubekka, N.E. Djelali, V. Chaleix, V. Gloaguen,
Removal of lead (II) and cadmium (II) from aqueous solutions
by adsorption on date pits modified by DTPAD, Desal. Wat.
Treat., 98 (2017) 233–243.
- W. Liu, J. Zhang, N. Li, Q. Ping, Adsorption of heavy metal ions
with modified diatomite from effluent, Desal. Wat. Treat., 103
(2018) 216–220.
- F. Medjdoub, K. Louhab, A. Hamouche, Comparative study of
the adsorption of paracetamol from aqueous solution on olive
stones and date pits, Desal. Wat. Treat., 104 (2018) 225–233.
- A.A. Peláez Cid, A.M.H. González, M.S. Villanueva, Adsorption
of heavy metals on activated carbons and their respective
lignocellulosic precursors: experimental and theoretical
approach, Desal. Wat. Treat., 104 (2018) 169–174.
- Y. Rong, H. Li, L. Xiao, Q. Wang, Y. Hu, S. Zhang, R. Han,
Adsorption of malachite green dye from solution by magnetic
activated carbon in batch mode, Desal. Wat. Treat., 106 (2018)
273–284.
- Z. Roostan, A. Rashidi, S.M. Borghei, Nickel ion removal
from aqueous solution using recyclable zeolitic imidazolate
framework-8 (ZIF-8) nano adsorbent: a kinetic and equilibrium
study, Desal. Wat. Treat., 103 (2018) 141–151.
- T. Satapanajaru, C. Chokejaroenrat, P. Pengthamkeerati,
Removal of reactive black 5 and its degradation using combined
treatment of nano-zero valent iron activated persulfate and
adsorption processes, Desal. Wat. Treat., 102 (2018) 300–311.
- F. Xiao, J. Cheng, X. Fan, C. Yang, Y. Hu, Adsorptive removal of
the hazardous anionic dye congo red and mechanistic study of
ZIF-8, Desal. Wat. Treat., 101 (2018) 291–300.
- X. Zhang, M. Qiao, Z. Zhang, R. Song, Z. Li, H. Li, Removal
of Zn(II) from aqueous solutions by adsorption using different
types of waste bricks, Desal. Wat. Treat., 106 (2018) 177–190.
- M.A. Zulfikar, Mustapa, M.B. Amran, A. Alni, D. Wahyuningrum,
Adsorption of cationic dye from aqueous solution using
molecularly imprinted polymers (MIPs). Desal. Wat. Treat., 103
(2018) 102–112.
- R. Ahmad, I. Hasan, A. Mittal, Adsorption of Cr(VI) and Cd(II) on chitosan grafted polyaniline-ommt nanocomposite:
isotherms, kinetics and thermodynamics studies, Desal. Wat.
Treat., 58 (2017) 144–153.
- A.H. Jawad, N.F.H. Mamat, M.F. Abdullah, K. Ismail,
Adsorption of methylene blue onto acid-treated mango peels:
kinetic, equilibrium and thermodynamic study, Desal. Wat.
Treat., 59 (2017) 210–219.
- P. Vairavel, V. Ramachandra Murty, S. Nethaji, Removal of
congo red dye from aqueous solutions by adsorption onto a
dual adsorbent (neurospora crassa dead biomass and wheat
bran): optimization, isotherm, and kinetics studies, Desal. Wat.
Treat., 68 (2017) 274–292.
- L. Wu, Z. Qin, F. Yu, J. Ma, Graphene oxide cross-linked
chitosan nanocomposite adsorbents for the removal of Cr(VI)
from aqueous environments, Desal. Wat. Treat., 72 (2017)
300–307.
- M.J. Angove, B.B. Johnson, J.D. Wells, The influence of temperature
on the adsorption of cadmium(II) and cobalt(II) on
kaolinite, J. Colloid Interface Sci., 204 (1998) 93–103.
- E.H. Borai, M.M.E. Breky, M.S. Sayed, M.M. Abo-Aly,
Synthesis, characterization and application of titanium oxide
nanocomposites for removal of radioactive cesium, cobalt and
europium ions, J. Colloid Interface Sci., 450 (2015) 17–25.
- J.D. Wells, B.B. Johnson, The influence of temperature on the
adsorption of cadmium(II) and cobalt(II) on goethite. J. Colloid
Interface Sci., 211 (1999) 281–290.
- A.H. Sulaymon, B.A. Abid, J.A. Al-Najar, Removal of lead
copper chromium and cobalt ions onto granular activated
carbon in batch and fixed-bed adsorbers, Chem. Eng. J., 155
(2009) 647–653.
- K.A. Krishnan, T.S. Anirudhan, Kinetic and equilibrium
modelling of cobalt(II) adsorption onto bagasse pith based
sulphurised activated carbon, Chem. Eng. J., 137 (2008) 257–264.
- M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies
of cobalt adsorption on apricot stone activated carbon, J. Ind.
Eng. Chem., 20 (2014) 745–751.
- B. Boulinguiez, P. Le Cloirec, Adsorption/desorption of
tetrahydrothiophene from natural gas onto granular and fibercloth
activated carbon for fuel cell applications, Energy Fuels,
23 (2009) 912–919.
- C. Lastoskie, K.E. Gubbins, N. Quirke, Pore size distribution
analysis of microporous carbons: a density functional theory
approach, J. Phys. Chem., 97 (1993) 4786–4796.
- P.I. Ravikovitch, S.C.O. Domhnaill, A.V. Neimark, F. Schueth,
K.K. Unger, Capillary hysteresis in nanopores: theoretical
and experimental studies of nitrogen adsorption on mcm-41,
Langmuir, 11 (1995) 4765–4772.
- L.H. Cohan, Sorption hysteresis and the vapor pressure of
concave surfaces, J. Am. Chem. Soc., 60 (1938) 433–435.
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in
multi-molecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination
of pore volume and area distributions in porous substances.
I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73
(1951) 373–380.
- M. Sevilla, A.B. Fuertes, The production of carbon materials
by hydrothermal carbonization of cellulose, Carbon, 47 (2009)
2281–2289.
- A.M. Donia, A.A. Atia, K.Z. Elwakeel, Selective separation of
mercury(II) using magnetic chitosan resin modified with schiff’s
base derived from thiourea and glutaraldehyde, J. Hazard.
Mater., 151 (2008) 372–379.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, Over the adsorption in solution. Z. Phys. Chem.,
57 (1906) 385–470.
- M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic
curve of activated charcoal, Proc. Acad. Sci. USSR, 55 (1947)
331–333.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Handlingar, 24 (1898) 1–39.
- Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by
biosorbents: review, Sep. Purif. Methods, 29 (2000) 189–232.
- S. Azizian, Kinetic models of sorption: a theoretical analysis,
J. Colloid Interface Sci., 276 (2004) 47–52.
- M. Sevilla, A.B. Fuertes, Chemical and structural properties of
carbonaceous products obtained by hydrothermal carbonization
of saccharides, Chem. Eur. J., 15 (2009) 4195–4203.
- X. Liang, M. Zeng, C. Qi, One-step synthesis of carbon
functionalized with sulfonic acid groups using hydrothermal
carbonization, Carbon, 48 (2010) 1844–1848.
- S. Zhao, X.-Y. Li, C.-Y. Wang, M.-M. Chen, Preparation of bowllike
and eggshell-like hollow carbon microspheres from potato
starch, Mater. Lett., 70 (2012) 54–56.
- G.K. Parshetti, S. Kent Hoekman, R. Balasubramanian, Chemical,
structural and combustion characteristics of carbonaceous
products obtained by hydrothermal carbonization of palm
empty fruit bunches, Bioresour. Technol., 135 (2013) 683–689.
- L. Yu, C. Falco, J. Weber, R.J. White, J.Y. Howe, M.-M. Titirici,
Carbohydrate-derived hydrothermal carbons: a thorough
characterization study, Langmuir, 28 (2012) 12373–12383.
- M.-M. Titirici, M. Antonietti, Chemistry and materials options
of sustainable carbon materials made by hydrothermal
carbonization, Chem. Soc. Rev., 39 (2010) 103–116.
- L. Zhang, W. Xie, X. Zhao, Y. Liu, W. Gao, Study on the
morphology, crystalline structure and thermal properties
of yellow ginger starch acetates with different degrees of
substitution, Thermochim. Acta, 495 (2009) 57–62.
- M. Sevilla, J.A. Maciá-Agulló, A.B. Fuertes, Hydrothermal
carbonization of biomass as a route for the sequestration of CO2:
chemical and structural properties of the carbonized products,
Biomass Bioenergy, 35 (2011) 3152–3159.
- X. Sun, Y. Li, Colloidal carbon spheres and their core/shell
structures with noble-metal nanoparticles, Angew. Chem. Int.
Ed., 43 (2004) 597–601.
- H.R. Holgate, J.C. Meyer, J.W. Tester, Glucose hydrolysis and
oxidation in supercritical water. AIChE J., 41 (1995) 637–648.
- A.C. Lua, T. Yang, Effect of activation temperature on the
textural and chemical properties of potassium hydroxide
activated carbon prepared from pistachio-nut shell, J. Colloid
Interface Sci., 274 (2004) 594–601.
- B.M. Kabyemela, T. Adschiri, R.M. Malaluan, K. Arai, Glucose
and fructose decomposition in subcritical and supercritical
water: detailed reaction pathway, mechanisms, and kinetics,
Ind. Eng. Chem. Res., 38 (1999) 2888–2895.
- J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett,
J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing,
K.K. Unger, Recommendations for the characterization of
porous solids (technical report), Pure Appl. Chem., 66 (1994)
1739–1758.
- M. Chen, D. Yan, X. Zhang, Z. Yu, G. Zhu, Y. Zhao, S. Lu,
G. Chen, H. Xu, A. Yu, Activated carbons by a hydrothermalassisted
activated method for li-ion batteries, Mater. Lett., 196
(2017) 276–279.
- W. Yuan, A. Xie, S. Li, F. Huang, P. Zhang, Y. Shen, High-activity
oxygen reduction catalyst based on low-cost bagasse, nitrogen
and large specific surface area, Energy, 115 (2016) 397–403.
- F. Suárez-Garcı́a, A. Martı́nez-Alonso, J.M.D. Tascón, Pyrolysis
of apple pulp: chemical activation with phosphoric acid, J. Anal.
Appl. Pyrolysis, 63 (2002) 283–301.
- F. Suárez-García, S. Villar-Rodil, C.G. Blanco, A. Martínez-Alonso, J.M.D. Tascón, Effect of phosphoric acid on chemical
transformations during nomex pyrolysis, Chem. Mater., 16
(2004) 2639–2647.
- M. Myglovets, O.I. Poddubnaya, O. Sevastyanova, M.E. Lindström, B. Gawdzik, M. Sobiesiak, M.M. Tsyba, V.I. Sapsay,
D.O. Klymchuk, A.M. Puziy, Preparation of carbon adsorbents
from lignosulfonate by phosphoric acid activation for the
adsorption of metal ions, Carbon, 80 (2014) 771–783.
- Z. Chen, L. Ma, S. Li, J. Geng, Q. Song, J. Liu, C. Wang, H. Wang,
J. Li, Z. Qin, S. Li, Simple approach to carboxyl-rich materials
through low-temperature heat treatment of hydrothermal
carbon in air, Appl. Surf. Sci., 257 (2011) 8686–8691.
- S. Román, J.M. Valente Nabais, B. Ledesma, J.F. González,
C. Laginhas, M.M. Titirici, Production of low-cost adsorbents
with tunable surface chemistry by conjunction of hydrothermal
carbonization and activation processes, Micropor. Mesopor.
Mater., 165 (2013) 127–133.
- M. Sánchez-Polo, J. Rivera-Utrilla, Adsorbent-adsorbate
interactions in the adsorption of Cd(II) and Hg(II) on ozonized
activated carbons, Environ. Sci. Technol., 36 (2002) 3850–3854.