References

  1. K. Sharafi, M. Moradi, A. Karami, T. Khosravi, Comparison of the efficiency of extended aeration activated sludge system and stabilization ponds in real scale in the removal of protozoan cysts and parasite ova from domestic wastewater using Bailenger method: a case study, Kermanshah, Iran, Desal. Wat. Treat., 55 (2015) 1135–1141.
  2. N. Mirzaei, H. Ghaffari, K. Karimyan, F. Moghadam, A. Javid, K. Sharafi, Survey of effective parameters (water sources, seasonal variation and residual chlorine) on presence of thermotolerant coliforms bacteria in different drinking water resources, Int. J. Pharm. Technol., 7 (2015) 9680.
  3. K. Sharafi, M. Pirsaheb, T. Khosravi, A. Dargahi, M. Moradi, M. Savadpour, Fluctuation of organic substances, solids, protozoan cysts, and parasite egg at different units of a wastewater integrated stabilization pond (full scale treatment plant): a case study, Iran, Desal. Wat. Treat., 57 (2016) 4913.
  4. H. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, A.H. Mahvi, A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry, Environ. Sci. Pollut. Res., 24 (2017) 4105–4116.
  5. K. Sharafi, M. Pirsaheb, R. Davoodi, H.R. Ghaffari, M. Fazlzadeh, M. Karimaei, M. Miri, K. Dindarloo, A. Azari, H. Arfaeinia, Quantitative microbial risk assessment of Giardia cyst and Ascaris egg in effluent of wastewater treatment plants used for agriculture irrigation – a case study, Desal. Wat. Treat., 80 (2017) 142.
  6. K. Sharafi, M. Fazlzadeh, M. Pirsaheb, M. Moradi, A. Azari, H. Sharafi, K. Dindarloo, H.R. Ghafari, Wastewater disinfection using sodium dichloroisocyanate (NaDCC) and sodium hypochlorite (NaOCL): modeling, optimization and comparative analysis, Desal. Wat. Treat., 66 (2017) 221–228.
  7. M.H. Habibollahi, A. Baghizadeh, A. Sabokbara, K. Sharafi, Isolation and characterization of copper and cadmium resistant bacteria from industrial wastewaters and evaluating the biosorption of selected bacteria, Desal. Wat. Treat., 93 (2017) 139–144.
  8. A. Sheikhmohammadi, Z. Dahaghin, S.M. Mohseni, M. Sarkhosh, H. Azarpira, Z. Atafar, M. Abtahi, S. Rezaei, M. Sardar, H. Masoudi, M. Faraji, The synthesis and application of the SiO2@Fe3O4@ MBT nanocomposite as a new magnetic sorbent for the adsorption of arsenate from aqueous solutions: modeling, optimization, and adsorption studies, J. Mol. Liq., 255 (2018) 313–323.
  9. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng., C, 44 (2014) 278.
  10. A. Ananth, S. Dharaneedharan, M.-S. Heo, Y.S. Mok, Copper oxide nanomaterials: synthesis, characterization and structurespecific antibacterial performance, Chem. Eng. J., 262 (2015) 179.
  11. M. Moradi, A.M. Mansouri, N. Azizi, J. Amini, K. Karimi, K. Sharafi, Adsorptive removal of phenol from aqueous solutions by copper (cu)-modified scoria powder: process modeling and kinetic evaluation, Desal. Wat. Treat., 57 (2016) 11820–11834.
  12. N.M. Zain, A. Stapley, G. Shama, Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications, Carbohydr. Polym., 112 (2014) 195.
  13. S. Rtimi, S. Giannakis, R. Sanjines, C. Pulgarin, M. Bensimon, J. Kiwi, Insight on the photocatalytic bacterial inactivation by co-sputtered TiO2–Cu in aerobic and anaerobic conditions, Appl. Catal., B, 182 (2016) 277.
  14. H. Ishiguro, Y. Yao, R. Nakano, M. Hara, K. Sunada, K. Hashimoto, Y. Kubota. Photocatalytic activity of Cu2+/TiO2-coated cordierite foam inactivates bacteriophages and Legionella pneumophila, Appl. Catal., B, 129 (2013) 56–61.
  15. P. Bleichert, C.E. Santo, M. Hanczaruk, H. Meyer, G. Grass, Inactivation of bacterial and viral biothreat agents on metallic copper surfaces, Biometals, 27 (2014) 1179–1189.
  16. O. Baghriche, S. Rtimi, C. Pulgarin, R. Sanjines, J. Kiwi, Effect of the spectral properties of TiO2, Cu, TiO2/Cu sputtered films on the bacterial inactivation under low intensity actinic light, J. Photochem. Photobiol., A, 251 (2013) 50–56.
  17. P.M. Linnik, I.B. Zubenko, Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds, Lake Reservoirs Res. Manage., 5 (2000) 11–21.
  18. P. Biswas, R. Bandyopadhyaya, Synergistic antibacterial activity of a combination of silver and copper nanoparticle impregnated activated carbon for water disinfection, Environ. Sci. Nano, 4 (2017) 2405–2417.
  19. L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez. Copperpolymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces, Mater. Sci. Eng., C, 69 (2016) 1391–1409.
  20. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 4 (2008) 707–716.
  21. S.S. Behera, J.K. Patra, K. Pramanik, N. Panda, H. Thatoi, Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles, World. J. Nano Sci. Eng., 2 (2012) 196.
  22. M.A. de Velasquez, T. Orta, I. Yáñez‐noguez, B. Jiménezcisneros, V.M. Luna Pabello, Adding silver and copper to hydrogen peroxide and peracetic acid in the disinfection of an advanced primary treatment effluent, Environ. Technol., 29 (2008) 1209–1217.
  23. W.E. Federation, A.P.H. Standard Methods for the Examination of Water and Wastewater, Association, Am. Public. Health. Assoc. (APHA), Washington, DC, USA, 2005.
  24. M. Tang, S. Zhang, X. Li, X. Pang, H. Qiu, Fabrication of magnetically recyclable Fe3O4@ Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol, Mater. Chem. Phys., 148 (2014) 639.
  25. V. Rodríguez-González, R.B. Domínguez-Espíndola, S. Casas-Flores, O.A. Patrón-Soberano, R. Camposeco-Solis, S.W. Lee, Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of Botrytis cinerea isolated from tomato infection, ACS Appl. Mater. Interfaces, 8 (2016) 31625–31637.
  26. R.J. Watts, S. Kong, M.P. Orr, G.C. Miller, B.E. Henry, Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent, Water. Res., 29 (1995) 95–100.
  27. E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property, Mater. Sci. Eng., C, 33 (2013) 4280.
  28. S. Pepper, M. Borkowski, M. Richmann, D. Reed, Determination of ferrous and ferric iron in aqueous biological solutions, Anal. Chim. Acta, 663 (2010) 172.
  29. Y.-S.E. Lin, R.D. Vidic, J.E. Stout, L.Y. Victor, Individual and combined effects of copper and silver ions on inactivation of Legionella pneumophila, Water Res., 30 (1996) 1905.
  30. S.B. Somani, N.W. Ingole, Formulation of kinetic model to predict disinfection of water by using natural herbs, Int. J. Environ. Sci., 2 (2012) 1344.
  31. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, John Wiley & Sons, Chichester, 2012.
  32. A. Mohseni-Bandpi, B. Kakavandi, R.R. Kalantary, A. Azari, A. Keramati, Development of a novel magnetite–chitosan composite for the removal of fluoride from drinking water: adsorption modeling and optimization, RSC Adv., 5 (2015) 73279.
  33. R.R. Kalantary, A. Azari, A. Esrafili, K. Yaghmaeian, M. Moradi, K. Sharafi, The survey of Malathion removal using magnetic graphene oxide nanocomposite as a novel adsorbent: thermodynamics, isotherms, and kinetic study, Desal. Wat. Treat., 57 (2016) 28460–28473.
  34. M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. ul Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Ann. Microbiol., 60 (2010) 75–80.
  35. J.R. Conway, A.S. Adeleye, J. Gardea-Torresdey, A.A. Keller, Aggregation, dissolution, and transformation of copper nanoparticles in natural waters, Environ. Sci. Technol., 49 (2015) 2749.
  36. J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11 (2013) 371.
  37. K.S. Chaturvedi, J.P. Henderson, Pathogenic adaptations to host-derived antibacterial copper, Front. Cell. Infect. Microbiol., 4 (2014) 3.
  38. M. Shi, H.S. Kwon, Z. Peng, A. Elder, H. Yang, Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles, ACS Nano, 6 (2012) 2157.
  39. M. Monachese, J.P. Burton, G. Reid, Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl. Environ. Microbiol., 78 (2012) 6397.
  40. M. Moradi, R.R. Kalantary, A. Esrafili, A.J. Jafari, M. Gholami, Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH, J. Mol. Liq., 248 (2017) 880.
  41. V. Ochoa-Herrera, G. León, Q. Banihani, J.A. Field, R. Sierra- Alvarez, Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems, Sci. Total Environ., 412 (2011) 380.
  42. M.J. Domek, M.W. Lechevallier, S.C. Cameron, G.A. McFeters, Evidence for the role of copper in the injury process of coliform bacteria in drinking water, Appl. Environ. Microbiol., 48 (1984) 289.
  43. Z. Hu, K. Chandran, D. Grasso, B.F. Smets, Comparison of nitrification inhibition by metals in batch and continuous flow reactors, Water Res., 38 (2004) 3949–3959.
  44. Y. Kurmaç, The impact of toxicity of metals on the activity of ureolytic mixed culture during the precipitation of calcium, J. Hazard. Mater., 163 (2009) 1063.
  45. C. Matocha, A. Karathanasis, S. Rakshit, K. Wagner, Reduction of copper (II) by iron (II), J. Environ. Qual., 34 (2005) 1539.
  46. M. Valko, H. Morris, M. Cronin, Toxicity and oxidative stress, Curr. Med. Chem., 12 (2005) 1161.
  47. S.P. Pathak, K. Gopal, Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection, Environ. Sci. Pollut. Res. Int., 19 (2012) 2285.
  48. Y.H. Kim, R. Hensley, Effective control of chlorination and dechlorination at wastewater treatment plants using redox potential, Water Environ. Res., 69 (1997) 1008–1014.
  49. I. De la Rosa-Gómez, M.T. Olguín, D. Alcántara, Bactericides of coliform microorganisms from wastewater using silverclinoptilolite rich tuffs, Appl. Clay Sci., 40 (2008) 45–53.
  50. M.I. Sáez, J.J. Casas, J.L. Guil‐Gerrero, M.D. Gil, R. Cañero, M.D. Suárez, Effects of organic matter, alkalinity and pH on acute copper toxicity to mosquitofish, Gambusia holbrooki: implications for a multipurpose management of irrigation ponds, Int. Rev. Hydrobiol., 98 (2013) 262.
  51. M.Y. Pamukoglu, F. Kargi, Copper (II) ion toxicity in activated sludge processes as function of operating parameters, Enzyme Microb. Technol., 40 (2007) 1228.
  52. D. Zeynalzadeh, R. Rezaei Kalantary, R. Nabizadeh Nodehi, A. Esrafili, M. Alimohamadi, A. Mokammel, Comparing efficiency of magnetic silver nanoparticles and magnetic silver nanoparticles modified with carbon layer on municipal wastewater disinfection, J. Health, 6 (2015) 7.
  53. K.J. Kramer, R.G. Jak, B. van Hattum, R.N. Hooftman, J.J. Zwolsman, Copper toxicity in relation to surface waterdissolved organic matter: biological effects to Daphnia magna, Environ. Toxicol. Chem., 23 (2004) 2971.
  54. V. Luna‐Pabello, M.M. Rios, B. Jimenez, M. Orta De Velasquez, Effectiveness of the use of Ag, Cu and PAA to disinfect municipal wastewater, Environ. Technol., 30 (2009) 129.
  55. H.R. Daly, I.C. Campbell, B.T. Hart, Copper toxicity to Paratya australiensis: II. Influence of bicarbonate and ionic strength, Environ. Toxicol. Chem., 9 (1990) 1007.
  56. A. Sheikhmohammadi, S.M. Mohseni, M. Sardar, M. Abtahi, S. Mahdavi, H. Keramati, Z. Dahaghin, S. Rezaei, M. Almasian, M. Sarkhosh, M. Faraji, Application of graphene oxide modified with 8-hydroxyquinoline for the adsorption of Cr (VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, J. Mol. Liq., 233 (2017) 75–88.
  57. D.J. Naghan, A. Azari, N. Mirzaei, A. Velayati, F.A. Tapouk, S. Adabi, M. Pirsaheb, K. Sharafi, Parameters effecting on photocatalytic degradation of the phenol from aqueous solutions in the presence of ZnO nanocatalyst under irradiation of UV-C light, Bulg. Chem. Commun., 47 (2015) 8–14.
  58. L.-F. Wang, N. Habibul, D.-Q. He, W.-W. Li, X. Zhang, H. Jiang, H.-Q. Yu, Copper release from copper nanoparticles in the presence of natural organic matter, Water Res., 68 (2015) 12.
  59. J.D. Cuppett, S.E. Duncan, A.M. Dietrich, Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response, Chem. Senses, 31 (2006) 689.