References

  1. M.K. Pholchan, J.D. Baptista, R.J. Davenport, T.P. Curtis, Systematic study of the effect of operating variables on reactor performance and microbial diversity in laboratory-scale activated sludge reactors, Water Res., 44 (2010) 1341–1352.
  2. P. Reboleirorivas, J. Martinpascual, J.A. Morillo, B. Juarezjimenez, J.M. Poyatos, B. Rodelas, J. Gonzalezlopez, Interlinkages between bacterial populations dynamics and the operational parameters in a moving bed membrane bioreactor treating urban sewage, Water Res., 88 (2016) 796–807.
  3. B. Young, R. Delatolla, K. Kennedy, E. Laflamme, A. Stintzi, Low temperature MBBR nitrification: microbiome analysis, Water Res., 111 (2017) 224.
  4. S. Han, X. Luo, H. Liao, H. Nie, W. Chen, Q. Huang, Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial, Sci. Total Environ., 599–600 (2017) 135–144.
  5. M.A. van Kessel, D.R. Speth, M. Albertsen, P.H. Nielsen, H.J.M. Op den Camp, B. Kartal, M.S.M. Jetten, S. Lücker, Complete nitrification by a single microorganism, Nature, 528 (2015) 555–559.
  6. H. Daims, E.V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R.H. Kirkegaard, M. von Bergen, T. Rattei, B. Bendinger, P.H. Nielsen, M. Wagner, Complete nitrification by Nitrospira bacteria, Nature, 528 (2015) 504–509.
  7. H. Daims, S. Lücker, M. Wagner, A new perspective on microbes formerly known as nitrite-oxidizing bacteria, Trends Microbiol., 24 (2016) 699–712.
  8. J.I. Prosser, Autotrophic nitrification in bacteria, Adv. Microb. Physiol., 30 (1989) 125–181.
  9. J.Z. He, J.P. Shen, L.M. Zhang, Y.G. Zhu, Y.M. Zheng, M.G. Xu, H. Di, Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices, Environ. Microbiol., 9 (2007) 2364–2374.
  10. S. Lücker, J. Schwarz, C. Gruberdorninger, E. Spieck, M. Wagner, H. Daims, Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants, ISME J., 9 (2015) 708–720.
  11. M. Arnaldos, Y. Amerlinck, U. Rehman, T. Maere, S.V. Hoey, W. Naessens, I. Nopens, From the affinity constant to the half-saturation index: understanding conventional modeling concepts in novel wastewater treatment processes, Water Res., 70 (2015) 458–470.
  12. T.P. Vannecke, E.I. Volcke, Modelling microbial competition in nitrifying biofilm reactors, Biotechnol. Bioeng., 112 (2015) 2550–2561.
  13. P. Kayee, C. Rongsayamanont, P. Kunapongkiti, T. Limpiyakorn, Ammonia half-saturation constants of sludge with different community compositions of ammonia-oxidizing bacteria, Environ. Eng. Res., 21 (2016) 140–144.
  14. M.A. Dytczak, K.L. Londry, J.A. Oleszkiewicz, Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates, Water Res., 42 (2008) 2320–2328.
  15. P. Regmi, M.W. Miller, B. Holgate, R. Bunce, H. Park, K. Chandran, B. Wett, S. Murthy, C.B. Bott, Control of aeration, aerobic SRT and COD input for mainstream nitritation/ denitritation, Water Res., 57 (2014) 162–171.
  16. J. Chudoba, J.S. Čech, J. Farkač, P. Grau, Control of activated sludge filamentous bulking: experimental verification of a kinetic selection theory, Water Res., 19 (1985) 191–196.
  17. D.A. Still, G.A. Ekama, M.C. Wentzel, T.G. Casey, G. Marais, Filamentous organism bulking in nutrient removal activated sludge systems. Paper 2: Stimulation of the selector effect under aerobic conditions, Water SA, 22 (1996) 97–114.
  18. G.T. Daigger, D.S. Parker, Enhancing nitrification in North American activated sludge plants, Water Sci. Technol., 41 (2000) 97–105.
  19. D. Vejmelkova, D.Y. Sorokin, B. Abbas, O.L. Kovaleva, R. Kleerebezem, M.J. Kampschreur, G. Muyzer, M.C. van Loosdrecht, Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading, Appl. Microbiol. Biotechnol., 93 (2012) 401–410.
  20. A. Terada, S. Sugawara, T. Yamamoto, S. Zhou, K. Koba, M. Hosomi, Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes, Biochem. Eng. J., 79 (2013) 153–161.
  21. B.B. Wang, Y.W. Gu, J.M. Chen, Q. Yao, H.J. Li, D.C. Peng, F. He, Is polymeric substrate in influent an indirect impetus for the nitrification process in an activated sludge system? Chemosphere, 177 (2017) 128–134.
  22. Q. Yao, D.C. Peng, Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants, AMB Express, 7 (2017) 25.
  23. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2012.
  24. P. Ginestet, J.M. Audic, V. Urbai, J.C. Block, Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide, Appl. Environ. Microbiol., 64 (1998) 2266–2268.
  25. R.I. Amann, In Situ Identification of Micro-Organisms by Whole Cell Hybridization with rRNA-Targeted Nucleic Acid Probes, Molecular Microbial Ecology Manual, Springer, Netherlands, 1995, pp. 331–345.
  26. Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules, Appl. Environ. Microbiol., 65 (1999) 1280–1288.
  27. A. Loy, F. Maixner, M. Wagner, M. Horn, probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007, Nucleic Acids Res., 35 (2007) 800–804.
  28. M.N. Gatti, J.B. Giménez, L. Carretero, M.V. Ruano, L. Borrás, J. Serralta, A. Seco, Enrichment of AOB and NOB population by applying a BABE reactor in an activated sludge pilot plant, Water Environ. Res., 87 (2015) 369–377.
  29. L.F. Yu, D.C. Peng, Y.X. Ren, Protozoan predation on nitrification performance and microbial community during bioaugmentation, Bioresour. Technol., 102 (2011) 10855–10860.
  30. J.P. Bassin, B. Abbas, C.L. Vilela, R. Kleerebezem, G. Muyzer, A.S. Rosado, M.C. van Loosdrecht, M. Dezotti, Tracking the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors operated at different COD/N ratios, Bioresour. Technol., 192 (2015) 131–141.
  31. C.Z. Guo, W. Fu, X.M. Chen, D.C. Peng, P.K. Jin, Nitrogenremoval performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch, Water Res., 47 (2013) 3845–3853.
  32. W. Tangkitjawisut, T. Limpiyakorn, S. Powtongsook, P. Pornkulwat, B.B. Suwannasilp, Differences in nitriteoxidizing communities and kinetics in a brackish environment after enrichment at low and high nitrite concentrations, J. Environ. Sci., 42 (2016) 41–49.
  33. P. Srithep, B. Khinthong, T. Chodanon, S. Powtongsook, W. Pungrasmi, T. Limpiyakorn, Communities of ammoniaoxidizing bacteria, ammonia-oxidizing archaea and nitriteoxidizing bacteria in shrimp ponds, Ann. Microbiol., 65 (2015) 267–278.
  34. R. Blackburne, V.M. Vadivelu, Z. Yuan, J. Keller, Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter, Water Res., 41 (2007) 3033–3042.