References
- K. Yoshizuka, K. Fukui, A. Inouek, Selective recovery of lithium
from seawater using a novel MnO2 type adsorbent, Ars
Separatoria Acta, 1 (2002) 79–86.
- R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Recovery of lithium
from seawater using manganese oxide adsorbent (H1.6Mn1.6O4)
derived from Li1.6Mn1.6O4, Ind. Eng. Chem. Res., 41 (2001) 2054–
2058.
- S.R. Krainov, B.N. Ryzhenko, V.M. Shvets, The Geochemistry
of Underground Waters. Nauka, Moscow, 2004, pp. 677–681.
- R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Lithium recovery
from salt lake brine by H2TiO3, Dalton Trans., 43 (2014) 8933–
8939.
- T. Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.J. Hong, G.W. Lee,
Y.K. Han, Y.S. Huh, K.S. Chung, Recovery of lithium ions from
seawater using a continuous flow adsorption column packed
with granulated chitosan–lithium manganese oxide, Indust.
Eng. Chem. Res., 55 (2016) 7218–7225.
- L. Noerochim, G.A. Satriawangsa, D. Susanti, A. Widodo,
Synthesis and characterization of lithium manganese oxide
with different ratio of mole on lithium recovery process from
ge-othermal fluid of Lumpur Sidoarjo, J. Mater. Sci. Chem.
Eng., 3 (2015) 56–62.
- S. Moore, Between rock and salt lake, Ind. Miner., 6 (2007)
58–69.
- S.T. Anderson, The mineral insutry of Chile. U.S. Geological
Survey Minerals Yearbook 7, (2004) pp. 1–7.
- S. Nishihama, K. Onishi, K. Yoshizuka, Selective recovery process
of lithium from seawater using integrated ion exchange
methods, Solv. Extract. Ion Exch., 29 (2011) 421–431.
- J. Darul, W. Nowicki, P. Piszora, Unusual compressional behavior
of lithium–manganese oxides: a case study of Li4Mn5O12, J.
Phys. Chem., 116 (2012) 17872–17879.
- H. Park, N. Singhal, E.H. Jho, Lithium sorption properties of
HMnO in seawater and wastewater, Water Res., 87 (2015) 320–327.
- S. Kim, J. Lee, J.S. Kang, K. Jo, S. Kim, Y.E. Sung, J. Yoon,
Lithium recovery from brine using a λ-MnO2/activated carbon
hybrid super capacitor system, Chemosphere, 125 (2015)
50–56.
- A. Subramania, N. Angayarkanni, T. Vasudevan, Effect of PVA
with various combustion fuels in sol-gel thermolysis process
for the synthesis of LiMn2O4 nano particles for Li-ion batteries,
Mater. Chem. Phys., 102 (2007) 19–23.
- X. Shi, D. Zhou, Z. Zhang, L. Yu, H. Xu, B. Chen, X. Yang, Synthesis
and properties of Li>1.6Mn1.6O4 and its adsorption application,
Hydrometallurgy, 110 (2011) 99–106.
- L. Wang, C.G. Meng, W. Ma, Study on Li+ uptake by lithium
ion-sieve via the pH technique, Colloids Surf. A: Physicochem.
Eng. Asp., 334 (2009) 34–39.
- Y.S. Han, H.J. Kim, J.K. Park, Millimeter-sized spherical ionsieve
foams with hierarchical pore structure for recovery of
lithium from seawater, Chem. Eng. J., 210 (2012) 482–489.
- A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, K. Sakane, K.
Ooi, Preparation and adsorptive properties of membrane-type
adsorbents for lithium recovery from seawater, Ind. Eng.
Chem. Res., 41 (2002) 4281–4287.
- L.W. Ma, N.Z. Chen, Y. Chen, X.C. Shi, Preparation, characterization
and adsorptive properties of foam-type lithium adsorbent,
Micropor. Mesopor. Mater., 142 (2011) 147–153.
- S.J. Oh, N. Kim, Y.T. Lee, Preparation and characterization of
PVDF/TiO2 organic–inorganic composite membranes for fouling
resistance improvement, J. Membr. Sci., 345 (2009) 13–20.
- J.K. Moon, K.W. Kim, C.H. Jung, Y.G. Shul, E.H. Lee, Preparation
of organic-inorganic composite adsorbent beads for
removal of radio nuclides and heavy metal ions, J. Radioanal.
Nucl. Chem., 246 (2000) 299–307.
- M.E. Mesquita, J.M. Vieira e Silva, Preliminary study of pH effect
in the application of Langmuir and Freundlich isotherms to Cu–
Zn competitive adsorption, Geoderma., 106 (2002) 219–234.
- M.S. Rahman, M.R. Islam, Effects of pH on isotherms modeling
for Cu2+ ions adsorption using maple wood sawdust,
Chem. Eng. J., 149 (2009) 273–280.