References
- G. Del Moro, A. Mancini, G. Mascolo, C. Di Iaconi, Comparison
of UV/H2O2 based AOP as an end treatment or integrated
with biological degradation for treating landfill leachates,
Chem. Eng. J., 218 (2013) 133–137.
- Q.N. Liao, F. Ji, J.C. Li, X. Zhan, Z.H. Hu, Decomposition and
mineralization of sulfaquinoxaline sodium during UV/H2O2
oxidation processes, Chem. Eng. J., 284 (2016) 494–502.
- R.C.H.M. Hofman-Caris, D.J.H. Harmsen, L. Puijker, K.A.
Baken, B.A. Wols, E.F. Beerendonk, L.L.M. Keltjens, Influence
of process conditions and water quality on the formation of
mutagenic byproducts in UV/H2O2 processes, Water Res., 74
(2015) 191–202.
- S. Bahnmüller, C.H. Loi, K.L. Linge, U.V. Gunten, S. Canonica,
Degradation rates of benzotriazoles and benzothiazoles under
UV-C irradiation and the advanced oxidation process UV/H2O2, Water Res., 74 (2015) 143–154.
- T. Coenen, W. Van de Moortel, F. Logist, J. Luyten, J.F.M. Van
Impe, J. Degrève, Modeling and geometry optimization of
photochemical reactors: Single- and multi-lamp reactors for
UV-H2O2 AOP systems, Chem. Eng. J., 96 (2013) 174–189.
- L. Prieto-Rodríguez, I. Oller, N. Klamerth, A. Agüera, E.M.
Rodríguez, S. Malato, Application of solar AOPs and ozonation
for elimination of micropollutants in municipal wastewater
treatment plant effluents, Water Res., 47 (2013) 1521–1528.
- J. Vittenet, W. Aboussaoud, J. Mendret, J.-S. Pic, H. Debellefontaine,
N. Lesage, K. Faucher, M.-H. Manero, F. Thibault-Starzyk,
H. Leclerc, A. Galarneau, S. Brosillon, Catalytic ozonation with
γ-Al2O3 to enhance the degradation of refractory organics in
water, Appl. Catal. A: Gen., 504 (2015) 519–532.
- F. Qi, W. Chu, B. Xu, Ozonation of phenacetin in associated
with a magnetic catalyst CuFe2O4: The reaction and transformation,
Chem. Eng. J., 262 (2015) 552–562.
- P. Van Aken, R. Van den Broeck, J. Degrève, R. Dewil, A pilotscale
coupling of ozonation and biodegradation of 2,4-dichlorophenol-
containing wastewater: The effect of biomass
acclimation towards chlorophenol and intermediate ozonation
products, J. Clean. Prod., 161 (2017) 1432–1441.
- J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms
of catalytic ozonation, Appl. Catal. B: Environ., 99 (2010)
27–42.
- Y. Nie, L. Zhang, Y.Y. Li, C. Hu, Enhanced Fenton-like degradation
of refractory organic compounds by surface complex
formation of LaFeO3 and H2O2, J. Hazard. Mater., 294 (2015)
195–200.
- M. Aleksić, H. Kušić, N. Koprivanac, D. Leszczynska, A.L.
Božić, Heterogeneous Fenton type processes for the degradation
of organic dye pollutant in water - The application of zeolite
assisted AOPs, Desalination, 257 (2010) 22–29.
- P. Oancea, V. Meltzer, Photo-Fenton process for the degradation
of Tartrazine (E102) in aqueous medium, J. Taiwan Inst.
Chem. Eng., 44 (2013) 990–994.
- P. Yongrui, Z. Zheng, M. Bao, Y. Li, Y. Zhou, G. Sang, Treatment
of partially hydrolyzed polyacrylamide wastewater by combined
Fenton oxidation and anaerobic biological processes,
Chem. Eng. J., 273 (2015) 1–6.
- Y. Ren, Y. Yuan, B. Lai, Y. Zhou, J. Wang, Treatment of reverse
osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton
process (1stFe/Cu/air-Fenton-2ndFe/Cu/air), J. Hazard.
Mater., 302 (2016) 36–44.
- J. Hartmann, P. Bartels, U. Mau, M. Witter, W.v. Tümpling,
J. Hofmann, E. Nietzschmann, Degradation of the drug
diclofenac in water by sonolysis in presence of catalysts, Chemosphere,
70 (2008) 453–461.
- D.K. Kim, K.E. O’Shea, W.J. Cooper, Mechanistic considerations
for the degradation of methyl tert-butyl ether (MTBE)
by sonolysis: Effect of argon vs. oxygen saturated solutions,
Ultrason. Sonochem., 19 (2012) 959–968.
- M.S. Saghafinia, S.M. Emadian, M. Vossoughi, Performances
evaluation of photo-Fenton process and Sonolysis for the treatment
of Penicillin G formulation effluent, Procedia Environ.
Sci., 8 (2011) 202–208.
- M. Lee, J. Oh, Sonolysis of trichloroethylene and carbon tetrachloride
in aqueous solution, Ultrason. Sonochem., 17 (2010)
207–212.
- N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes
(AOPs) involving ultrasound for waste water treatment:
A review with emphasis on cost estimation, Ultrason.
Sonochem., 17 (2010) 990–1003.
- K. Ji, H. Dai, J. Deng, H. Zang, H. Arandiyan, S. Xie, H. Yang,
3DOM BiVO4 supported silver bromide and noble metals:
High-performance photocatalysts for the visible-light-driven
degradation of 4-chlorophenol, Appl. Catal. B: Environ., 168–
169 (2015) 274–282.
- J.C. Ahern, R. Fairchild, J.S. Thomas, J. Carr, H.H. Patterson,
Characterization of BiOX compounds as photocatalysts for the
degradation of pharmaceuticals in water, Appl. Catal. B: Environ.,
179 (2015) 229–238.
- R. Jaiswal, N. Patel, A. Dashora, R. Fernandes, M. Yadav, R.
Edla, R.S. Varma, D.C. Kothari, B.L. Ahuja, A. Miotello, Efficient
Co-B-codoped TiO2 photocatalyst for degradation of
organic water pollutant under visible light, Appl. Catal. B:
Environ., 183 (2016) 242–253.
- Y.P. Luo, J. Chen, J.W. Liu, Y. Shao, X.F. Li, D.Z. Li, Hydroxide
SrSn(OH)6: A new photocatalyst for degradation of benzene
and rhodamine B, Appl. Catal. B: Environ., 182 (2016) 533–540.
- H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2
photocatalyst for environmental applications, J. Photochem.
Photobiol. C: Photochem. Rev., 15 (2013) 1–20.
- R.D. Sun, A. Nakajima, T. Watanabe, K. Hashimoto, Decomposition
of gas-phase octamethyltrisiloxane on TiO2 thin film
photocatalysts - Catalytic activity, deactivation, and regeneration,
J. Photochem. Photobiol. A: Chem., 154 (2003) 203–209.
- A.V. Vorontsov, E.N. Savinov, C. Lion, P.G. Smirniotis, TiO2 reactivation
in photocatalytic destruction of gaseous diethyl sulfide
in a coil reactor, Appl. Catal. B: Environ., 44 (2003) 25–40.
- L.Q. Jing, B.F. Xin, F.L. Yuan, B.Q. Wang, K.Y. Shi, W.M. Cai,
H.Q. Fu, Deactivation and regeneration of ZnO and TiO2
nanoparticles in the gas phase photocatalytic oxidation of
n-C7H16 or SO2, Appl. Catal. A: Gen., 275 (2004) 49–54.
- F. Fresno, M.D. Hernández-Alonso, D. Tudela, J.M. Coronado,
J. Soria, Photocatalytic degradation of toluene over doped and
coupled (Ti,M)O2 (M=Sn or Zr) nanocrystalline oxides: Influence
of the heteroatom distribution on deactivation, Appl.
Catal. B: Environ., 84 (2008) 598–606.
- R. Portela, M.C. Canela, B. Sánchez, F.C. Marques, A.M.
Stumbo, R.F. Tessinari, J.M. Coronado, S. Suárez, H2S photodegradation
by TiO2/M-MCM-41 (M = Cr or Ce): Deactivation
and by-product generation under UV-A and visible light, Appl.
Catal. B: Environ., 84 (2008) 643–650.
- S.O. Hay, T.N. Obee, C. Thibaud-Erkey, The deactivation of
photocatalytic based air purifiers by ambient siloxanes, Appl.
Catal. B: Environ., 99 (2010) 435–441.
- Z. Wu, Z. Sheng, Y. Liu, H. Wang, J. Mo, Deactivation mechanism
of PtOx/TiO2 photocatalyst towards the oxidation of NO
in gas phase, J. Hazard. Mater., 185 (2011) 1053–1058.
- M.D. Hernández-Alonso, I. Tejedor-Tejedor, J.M. Coronado,
M.A. Anderson, Operando FTIR study of the photocatalytic
oxidation of methylcyclohexane and toluene in air over TiO2-ZrO2 thin films: Influence of the aromaticity of the target
molecule on deactivation, Appl. Catal. B: Environ., 101 (2011)
283–293.
- D. Sannino, V. Vaiano, P. Ciambelli, P. Eloy, E.M. Gaigneaux,
Avoiding the deactivation of sulphated MoOx/TiO2 catalysts
in the photocatalytic cyclohexane oxidative dehydrogenation
by a fluidized bed photoreactor, Appl. Catal. A: Gen., 394 (2011)
71–78.
- X. Li, G.Q. Zhang, H.G. Pan, Experimental study on ozone photolytic
and photocatalytic degradation of H2S using continuous
flow mode, J. Hazard. Mater., 199–200 (2012) 255–261.
- M.G. Jeong, E.J. Park, H.O. Seo, K.D. Kim, Y.D. Kim, D.C. Lim,
Humidity effect on photocatalytic activity of TiO2 and regeneration
of deactivated photocatalysts, Appl. Surf. Sci., 271 (2013)
164–170.
- F. Thevenet, C. Guillard, A. Rousseau, Acetylene photocatalytic
oxidation using continuous flow reactor: Gas phase and
adsorbed phase investigation, assessment of the photocatalyst
deactivation, Chem. Eng. J., 244 (2014) 50–58.
- W.W. Yang, C.H. Li, L. Wang, S.N. Sun, X. Yan, Solvothermal
fabrication of activated semi-coke supported TiO2-rGO nanocomposite
photocatalysts and application for NO removal
under visible light, Appl. Surf. Sci., 353 (2015) 307–316.
- S. Tuprakay, W. Liengcharernsit, Lifetime and regeneration
of immobilized titania for photocatalytic removal of aqueous
hexavalent chromium, J. Hazard. Mater., 124 (2005) 53–58.
- J. Medina-Valtierra, J. García-Servín, C. Frausto-Reyes, S.
Calixto, The photocatalytic application and regeneration of
anatase thin films with embedded commercial TiO2 particles
deposited on glass microrods, Appl. Surf. Sci., 252 (2006) 3600–3608.
- Y.H. Yang, N. Ren, Y.H. Zhang, Y. Tang, Nanosized cadmium
sulfide in polyelectrolyte protected mesoporous sphere: A stable
and regeneratable photocatalyst for visible-light-induced
removal of organic pollutants, J. Photochem. Photobiol. A:
Chem., 201 (2009) 111–120.
- J.T. Carneiro, J.A. Moulijn, G. Mul, Photocatalytic oxidation of
cyclohexane by titanium dioxide: Catalyst deactivation and
regeneration, J. Catal., 273 (2010) 199–210.
- S. Kaewgun, B.I. Lee, Deactivation and regeneration of visible
light active brookite titania in photocatalytic degradation
of organic dye, J. Photochem. Photobiol. A: Chem., 210 (2010)
162–167.
- V.G. Gandhi, M.K. Mishra, P.A. Joshi, A study on deactivation
and regeneration of titanium dioxide during photocatalytic
degradation of phthalic acid, J. Ind. Eng. Chem., 18 (2012) 1902–
1907.
- S. Carbonaro, M.N. Sugihara, T.J. Strathmann, Continuous-flow
photocatalytic treatment of pharmaceutical micropollutants:
Activity, inhibition, and deactivation of TiO2 photocatalysts in
wastewater effluent, Appl. Catal. B: Environ., 129 (2013) 1–12.
- Y. Shavisi, S. Sharifnia, M. Zendehzaban, M.L. Mirghavami,
S. Kakehazar, Application of solar light for degradation of
ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst, J. Ind. Eng. Chem., 20 (2014) 2806–2813.
- N. Miranda-García, S. Suárez, M.I. Maldonado, S. Malato, B.
Sánchez, Regeneration approaches for TiO2 immobilized photocatalyst
used in the elimination of emerging contaminants
in water, Catal. Today, 230 (2014) 27–34.
- X. Yan, X. Xu, J. Liu, R. Bao, L. Li, Regeneration of photocatalysts
by in situ UV irradiation in photocatalytic membrane
reactor, Russ. J. Appl. Chem., 89 (2016) 94–98.
- C. Han, M.Q. Yang, B. Weng, Y.J. Xu, Improving the photocatalytic
activity and anti-photocorrosion of semiconductor ZnO
by coupling with versatile carbon, Phys. Chem. Chem. Phys.,
16 (2014) 16891–16903.
- N. Zhang, M.Q. Yang, S. Liu, Y. Sun, Y.J. Xu, Waltzing with the
versatile platform of graphene to synthesize composite photocatalysts,
Chem. Rev., 115 (2015) 10307–10377.
- M.Q. Yang, C. Han, N. Zhang, Y.J. Xu, Precursor chemistry
matters in boosting photoredox activity of graphene/semiconductor
composites, Nanoscale, 7 (2015) 18062–18070.
- B. Weng, M.Q. Yang, N. Zhang, Y.J. Xu, Toward the enhanced
photoactivity and photostability of ZnO nanospheres via intimate
surface coating with reduced graphene oxide, J. Mater.
Chem. A, 2 (2014) 9380–9389.
- K.Q. Lu, L. Yuan, X. Xin, Y.J. Xu, Hybridization of graphene
oxide with commercial graphene for constructing 3D metal-free aerogel with enhanced photocatalysis, Appl. Catal. B:
Environ., 226 (2018) 16–22.
- L.X. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut,
Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts:
studies of deactivation and regeneration, J. Catal., 196
(2000) 253–261.
- L. Zhang, J.C. Yu, A simple approach to reactivate silver-coated
titanium dioxide photocatalyst, Catal. Commun., 6 (2005) 684–687.
- Y. Li, Z. Jiao, N. Yang, H. Gao, Regeneration of nano-ZnO photocatalyst
by the means of soft-mechanochemical ion exchange
method, J. Environ. Sci., 21 (2009) S69–S72.
- J. Jeong, K. Sekiguchi, K. Sakamoto, Photochemical and photocatalytic
degradation of gaseous toluene using short-wavelength
UV irradiation with TiO2 catalyst: Comparison of three
UV sources, Chemosphere, 57 (2004) 663–671.