References

  1. S.S.D. Foster, Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, Netherlands Organization for Applied Scientific Research, Netherlands 1987, pp. 69–86.
  2. N. Gaaloul, E. Saeid, Artificial recharge experiences in semiarid areas, USA 2014, pp. 17–49.
  3. J. Margat, Vulnérabilité des nappesd’eausouterraine à la pollution: Base de la cartographie [Groundwater vulnerability to pollution: Basis of cartography], BRGM Orléans Report [Bureau of Geological and Mining Research], France, 1968, p. 78.
  4. M. Albinet, J. Margat, Cartographie de la vulnérabilité à la pollution des nappesd’eausouterraine [Mapping of Groundwater Vulnerability to Pollution], IAHS publication, Proc. Moscow Symposium, 1975, pp. 58–70.
  5. D. Allier, B. Vittecoq, V. Mardhel, Evaluation de la vulnérabilitéintrinsèque des eauxsouterraines de la Martinique [Assessment of the groundwater intrinsic vulnerability in Martinique], BRGM Martinique Report [Bureau of Geological and Mining Research], France, 2008, p. 78.
  6. J. Vrba, A. Zaporozec, Guidebook on mapping groundwater vulnerability, in International Contributions to Hydrology, vol. 16, Heinz Heise, Hannover, 1994, p. 131.
  7. L. Aller, T. Bennet, J.H. Lehr, R.J. Petty, G. Hacket, DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings, US Environmental Protection Agency Report (EPA/600/2-87/035), Robert S. Kerr Environmental Research Laboratory, (1987) p. 455.
  8. M.M.D.M. Citivà, SINTACS: A parametric system for evaluating and mapping the vulnerability of aquifers to pollution. Methodology and automation, Pitagora Publications, Italia, 1997.
  9. N. Doerfliger, F. Zwahlen, Groundwater vulnerability mapping in karstic regions (EPIK). Application to groundwater protection zone: practical guide. Office Fédéral de l’Environnement, des Forêtset du Paysage (OFEFP), Berne, Suisse, 1998.
  10. N. Doerfliger, V. Plagnes, K. Kavouri, J. Gouin, Cartographie de la vulnérabilitéintrinsèque des aquifèreskarstiques. Guide méthodologique de la méthodePaPRIKa [Mapping of intrinsic vulnerability of karstic aquifers. Methodological Guide to the PaPRIKa Method], BRGM Orléans Report [Bureau of Geological and Mining Research], France, 2009, p. 119.
  11. D. Daly, A. Dassargues, D. Drew, S. Dunne, N. Goldscheider, S. Neale, I. Popescu, F. Zwahlen, Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping, Hydrogeol. J., 10 (2002) 340–345.
  12. J.M. Vías, B. Andreo, M.J. Perles, F. Carrasco, I. Vadillo, P. Jiménez, Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method, Hydrogeol. J., 14 (2006) 912–925.
  13. N. Goldscheider, M.S.S.H.H. Klute, The PI Method - a GISbased approach to mapping groundwater vulnerability with special consideration of karst aquifers, J. Appl. Geology, 46(3) (2000) 157–166.
  14. N. Ravbar, The Protection of Karst Waters: A Comprehensive Slovene Approach to Vulnerability and Contamination Risk Mapping. Ph.D. Thesis, University of Nova Gorica, 1970.
  15. I. Jmal, A. Bachaer, B. Emna, A. Nabila, S. Salwa, H. Monji, B. Salem,Assessing groundwater vulnerability to nitrate pollution using statistical approaches: a case study of Sidi Bouzid shallow aquifer, Central Tunisia, Arab. J. Geosci., 10 (2017) 1–15.
  16. S. Saidi, S. Bouri, H. Ben Dhia, Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-KsourEssaf aquifer, Tunisia: a validation study, Hydrol. Sci. J., 56 (2011) 288–304.
  17. D. Thirumalaivasan, M. Karmegam, K. Venugopala, AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS, Environ. Model. Softw., 18 (2003) 645–656.
  18. D. Raj Pathak, A. Hiratsuka, I. Awata, L. Chen, Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model, Environ. Geology, 57 (2007) 1569–1578.
  19. R. Li, J.W. Merchant, Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA, Sci. Total Environ., 447 (2013) 32–45.
  20. A. VictorineNeh, A. AkoAko, A.R. Richard Ayuk, T. Hosono, DRASTIC-GIS model for assessing vulnerability to pollution of the phreatic aquiferous formations in Douala–Cameroon, J. Afr. Earth Sci., 102 (2015) 180–190.
  21. M. Arauzo, Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones, Sci. Total Environ., 575 (2016)799–812.
  22. M.H. Hamza, A. Added, A. Francés, R. Rodriguez, Validitée de l’application des méthodes de vulnérabilité DRASTIC, SINTACS et SI à l’étude de la pollution parles nitrates dans la nappe phréatique de Metline–Ras Jebel–Raf Raf, C. R. Geosci., 339 (2007) 493–505.
  23. W. Aydi, S. Saidi, M. Chalbaoui, S. Chaibi, H. Ben Dhia, Evaluation of the groundwater vulnerability to pollution using an intrinsic and a specific method in a GIS environment: application to the plain of Sidi Bouzid (Central Tunisia), Arab. J. Sci. Eng., 38 (2013) 1815–1831.
  24. A. Zghibi, A. Merzougui, I. Chenini, K. Ergaieg, L. Zouhri, J. Tarhouni, Groundwater vulnerability analysis of Tunisian coastal aquifer: An application of DRASTIC index method in GIS environment, Groundwater for Sustainable Dev., 2–3 (2016) 169–181.
  25. N. Allouche, M. Maanan, M. Gontara, N. Rollo, I. Jmal, S. Bouri, A global risk approach to assessing groundwater vulnerability, Environ. Model. Softw., 88 (2017) 168–182.
  26. INM (InstitutNationale de la Météorologie) [National Institute of Meteorology], Tableaux climatologiquesmensuels (1975– 2015) [Monthly Climate Tables (1975–2015)], stations of Sidi Bouzid, 2016.
  27. M. Mosbahi, M. Khlifi, A.Tlili, F. Jamoussi, Influence of the halokinesis on the clay mineral repartition of upper Maastrichtian – Ypresian in the Meknassy-Mezzouna basin, centerwestern Tunisia, Arab. J. Geosci. 7–9 (2014) 3881–3899.
  28. M. Mosbahi, M. Khlifi, F. Jamoussi, A. Tlili, Valorization of Coniacian - middle Campanian clay minerals of the Meknassy-Mezzouna region (center-western Tunisia) in the clinker manufacturing, Arab. J. Geosci., 10 (2017) 349–357.
  29. A. Kadri, Evolution tectonosédimentaire (Aptien-Quaternaire) des JebelsKoumine, Hamra et Lessouda (Tunisie centrale) [Tectonosedimentaryevolution (Aptian-Quaternary) of JebelsKoumine, Hamra and Lessouda (Central Tunisia)]. Ph.D. thesis, University of Paris-Sud, France 1988, p. 183.
  30. M. Rabhi, Contribution à l’étudestratigraphique et analyse de l’évolutiongéodynamique de l’Axe Nord-Sud et des structures avoisinantes (Tunisiecentrale) [Contribution to the stratigraphic study and analysis of geodynamic evolution of the North-South axis and neighboring structures (Central Tunisia)]. Ph.D.Thesis, University of Tunis El Manar, Tunisia, 1999, p. 226.
  31. H. Azaiez, H. Gabtni, I. Bouyahya, D. Tanfous, S. Haji, M. Bedir, Lineaments extraction from gravity data by automatic lineament tracing method in Sidi Bouzid Basin (Central Tunisia): Structural framework inference and hydrogeological implication, Int. J. Geosci., 2 (2011) 373–383.
  32. H. Smida, Apports des Systèmesd’InformationsGéographiques( SIG) pour uneapprocheintégréedansl’étude et la gestion des ressourceseneau des systems aquifères de la région de Sidi Bouzid (Tunisiecentrale) [Contributions of Geographic Information Systems (GIS) for an integrated approach in the water resources study and management of aquifer systems in the region of Sidi Bouzid (Central Tunisia)]. Ph.D. thesis, University of Sfax, Tunisia, 2008, p. 283.
  33. Y. Hamed, R. Ahmadi, R. Hadji, N. Mokadem, H. Ben Dhia, W. Ali, Groundwater evolution of the continental intercalaire aquifer of southern Tunisia and a part of southern Algeria: use of geochemical and isotopic indicators, Desal. Water Treat., 52 (2013) 1990–1996.
  34. Y. Hamed, R. Ahmadi, A. Demdoum, S. Bouri, I. Gargouri, H. Ben Dhia, S. Al-Gamal, R. Laouar, A. Choura, Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern Tunisia, J. Afr. Earth Sci., 100 (2014) 418–436.
  35. N. Mokadem, A. Demdoum, Y. Hamed, S. Bouri, R. Hadji, A. Boyce, R. Laouar, A. Sâad, Hydrogeochemical and stable isotope data of Groundwater of a multi-aquifer system: Northern Gafsa basin - Central Tunisia, J. Afr. Earth Sci., 114 (2015) 174–191.
  36. H. Riheb, B. Abderrahmane, L. Yacine, B. Mustapha, C. Abd el Madjid, D. Abdeslem, Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: A case study of Souk Ahras region, NE Algeria, Quat. Int., 302 (2013) 224–237.
  37. H. Besser, N. Mokadem, B. Redhouania, N. Rhimi, F. Khlifi, Y. Ayadi, Z. Omar, A. Bouajila, Y. Hamed, GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia), Arab. J. Geosci., 350 (2017) 1–20.
  38. H. Yangui, Z. Kamel, T. Rim, R. Kazimierz, Recharge mode and mineralization of groundwater in a semi-arid region: Sidi Bouzid plain (central Tunisia), Environ. Earth Sci., 63 (2011) 969–979.
  39. DGRE (Direction Générale des Ressources en Eaux) [General Directorate of Water Resources], Annuaires annuels d’exploitation des nappes phréatiques [Annual directories for the exploitation of groundwater], Tunisia 2015.
  40. H. Baalousha, Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand, Agric. Water Manage., 97 (2010) 240–246.
  41. L. Bai, Y. Wang, F. Meng, Application of DRASTIC and extension theory in the groundwater vulnerability evaluation, Water Environ. J., 26 (2012) 381–391.
  42. B. Engel, K. Navulur, B. Cooper, Estimating Groundwater Vulnerability to Non-point Source Pollution from Nitrates and Pesticides on a Regional Scale. Proceedings of the conference on HydroGIS: Application of geographic information systems in hydrology and water resources management, IAHS, Vienna 1996, pp. 521–526.
  43. L. Ribeiro, J.C. Pindo, L. Dominguez-Granda, Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method, Sci. Total Environ., 574 (2000) 1674–1683.
  44. A. Mair, A.I. El-Kadi, Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA, J. Contam. Hydrol., 153 (2013) 1–23.
  45. A. Pisciotta, G. Cusimano, R. Favara, Groundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy, J. Geochem. Explor., 156 (2015) 89–100.
  46. G. Bartzas, F. Tinivella, L. Medini, D. Zaharaki, K. Komnitsas, Assessment of groundwater contamination risk in an agricultural area in north Italy, Info. Process. Agri., 2 (2015) 109–129.
  47. N. Allouche, M. Maanan, M. Gontara, N. Rollo, I. Jmal, S. Bouri, A global risk approach to assessing groundwater vulnerability, Environ. Model. Softw., 88 (2017) 168–182.