References
- A. Rubio-Clemente, R.A. Torres-Palma, G.A. Peñuela, Removal
of polycyclic aromatic hydrocarbons in aqueous environment
by chemical treatments: A review, Sci. Total Environ., 478
(2014) 201–225.
- C. Wang, K. Ma, T. Wu, M. Ye, P. Tan, K. Yan, Electrochemical
mineralization pathway of quinoline by boron-doped diamond
anodes, Chemosphere, 149 (2016) 219–223.
- S. Meyer, S. Cartellieri, H. Steinhart, Simultaneous determination
of PAHs, hetero-PAHs (N, S, O), and their degradation
products in creosote-contaminated soils. method development,
validation, and application to hazardous waste sites,
Anal. Chem., 71 (1999) 4023–4029.
- D. Rameshrajaa, V.C. Srivastavaa, J.P. Kushwahab, I.D. Malla,
Quinoline adsorption onto granular activated carbon and
bagasse fly ash, Chem. Eng. J., 181–182 (2012) 343– 351.
- B.U. Bohlmann, M. Bohnet, Improvement of process stability
of microbiological quinoline degradation in a three-phase fluidized
bed reactor, Chem. Eng. Technol., 2 (2001) 91–96.
- I. Weid, J.M. Marques, C.D. Cunha, R.K. Lippi, S.C.C. dos
Santos, A.S. Rosado, U. Lins, L. Seldin, Identification and biodegradation
potential of a novel strain of dietzia cinnamea isolated
from a petroleum-contaminated tropical soil, Syst. Appl.
Microbial., 30 (2007) 331–339.
- K. Sugaya, O. Nakayama, N. Hinata, K. Kamekura, A. Ito, Biodegradation
of quinoline in crude oil, J. Chem. Technol. Biotechnol.,
76 (2010) 603–611.
- L. Sun, B. Tuo, Q. Wang, J. Yan, Study on the isolation of bacteria
for quinoline degradation and enhanced treatment of refining
wastewater, Pet. Process Petroche., 43 (2012) 71–75.
- P. Zhang, X. Zhang, Y. Fang, Y. Lan, Adsorption characteristics
of quinoline on activated carbon fiber, Chem. Ind. Eng. Prog.,
32 (2013) 209–213.
- L.DS. Pinto, L.M.F. Santos, B. Al-Duri1, R.CD. Santos, Supercritical
water oxidation of quinoline in a continuous plug flow
reactor-part 1: effect of key operating parameters, J. Chem.
Technol. Biotechnol., 81 (2006) 912–918.
- A. Chen, L. Zhang, F. Chang, Y. Ge, K. Wang, Degradation of
quinoline from biotreated effluent with ozone-based advanced
oxidation processes, Chinese J. Environ. Eng., 9 (2015) 5795–
5800.
- D.R. Stapleton, I.K. Konstantinou, A. Karakitsou, D.G. Hela,
M. Papadaki, 2-Hydroxypyridine photolytic degradation by
254nm UV irradiation at different conditions, Chemosphere,
77 (2009) 1099–1105.
- R. Enriquez, P. Pichat, Interactions of humic acid, quinoline,
and TiO2 in water in relation to quinoline photocatalytic
removal, Langmuir, 17 (2001) 6132–6137.
- X. Xing, X. Zhu, H. Li, Y. Jiang, J. Ni, Electrochemical oxidation
of nitrogen-heterocyclic compounds at boron-doped diamond
electrode, Chemosphere, 86 (2012) 368–375.
- A.B. Thomsen, F. Laturnus, The influence of different soil
constituents on the reaction kinetics of wet oxidation of the
creosote compound quinoline, J. Hazard. Mater., 81 (2001)
193–203.
- S. Navalon, M. Alvaro, H. Garcia, Heterogeneous fenton catalysts
based on clays, silicas and zeolites, Appl. Catal., B, 99
(2010) 1–26.
- M. Kurian, D.S. Nair, A.M. Rahnamol, Influence of the synthesis
conditions on the catalytic efficiency of NiFe2O4 and
ZnFe2O4 nanoparticles towards the wet peroxide oxidation of
4-chlorophenol, React. Kinet. Catal. Lett., 111 (2014) 591–604.
- M. Kurian, C. Kunjachan, A. Sreevalsan, Catalytic degradation
of chlorinated organic pollutants over CexFe1-xO2 (x: 0, 0.25, 0.5,
0.75, 1) nanocomposites at mild conditions, Chem. Eng. J., 308
(2017) 67–77.
- W. Wang, Q. Zhu, F. Qin, Q.G. Dai, X.Y. Wang, Fe doped CeO2
nanosheets as Fenton-like heterogeneous catalysts for degradation
of salicylic acid, Chem. Eng. J., 333 (2018) 226–239.
- G. Lafaye, J.B. Jr., D. Duprez, Impact of cerium-based support
oxides in catalytic wet air oxidation: conflicting role of redox
and acid-base properties, Catal. Today, 253 (2015) 89–98.
- A.M.T. Silva, R.R.N. Marques, R.M. Quinta-Ferreira, Catalysts
based in cerium oxide for wet oxidation of acrylic acid in the
prevention of environmental risks, Appl. Catal., B, 47 (2004)
269–279.
- S. Mnasri-Ghnimi, N. Frini-Srasra, Catalytic wet peroxide oxidation
of phenol over Ce-Zr-modified clays: effect of the pillaring
method, Korean J. Chem. Eng., 32 (2015) 68–73.
- A. Trovarelli, C.D. Leitenburg, M. Boaro, G. Dolcetti, The utilization
of ceria in industrial catalysis, Catal. Today, 50 (1999)
353–367.
- J. Han, H.Y. Zeng, S. Xu, C.R. Chen, X.J. Liu, Catalytic properties
of CuMgAlO catalyst and degradation mechanismin
CWPO of methyl orange, Appl. Catal., A, 527 (2016) 72–80.
- S.S. Jiang, H.P. Zhang, Y. Yan, Cu-MFI zeolite supported on
paper-like sintered stainless fiber for catalytic wet peroxide
oxidation of phenol in a batch reactor, Sep. Purif. Technol., 90
(2018) 243–251.
- N. Inchaurrondo, J. Cechini, J. Font, P. Haure, Strategies for
enhanced CWPO of phenol solutions, Appl. Catal., B, 111–112
(2012) 641–648.
- W. Liu, M. Flytzani-Stephanopoulos, Total oxidation of carbon
monoxide and methane over transition metal fluorite oxide
composite Catalysts: II. catalyst characterization and reaction-kinetics, J. Catal., 153 (1995) 317–332.
- Z. Liu, C. He, B. Chen, H. Liu, CuO-CeO2 mixed oxide catalyst
for the catalytic decomposition of N2O in the presence of oxygen,
Catal. Today, 5 (2017) 1–6.
- G. Zhou, H. Lan, T. Gao, H. Xie, Influence of Ce/Cu ratio on the
performance of ordered mesoporous CeCu composite oxide
catalysts, Chem. Eng. J., 246 (2014) 53–63.
- L. Shi, C.Y. Zeng, Q.H. Lin, P. Lu, W.Q. Niu, N. Tsubakib, Citric
acid assisted one-step synthesis of highly dispersed metallic
Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts
for Fischer-Tropsch synthesis, Catal. Today, 228 (2014)
206–211.
- X. Yang, F. Meng, G. Chen, X. Zhang, Synthesis and microstructures
characterization of trigonometry-star-like CeO2, J.
Synth. Cryst., 44 (2015) 44:3612.
- Y. Li, C. Wang, G. Liu, L. Zeng, Y. He, J. Zeng, Influence of
additives on structure and performance of CeO2-ZrO2-Al2O3
composite oxide, Chin. J. Nonferrous. Met., 26 (2016) 1255–1263.
- U. Menon, H. Poelman, V. Bliznuk, V.V. Galvita, D. Poelman,
G.B. Marin, Nature of the active sites for the total oxidation of
toluene by CuOCeO2/Al2O3, J. Catal., 295 (2012) 91–103.
- H. Xie, Q. Du, H. Li, G. Zhou, S. Chen, Z. Jiao, J. Ren, Catalytic
combustion of volatile aromatic compounds over CuO-CeO2
catalyst, Korean J. Chem. Eng., 34 (2017) 1944–1951.
- H.C. Yao, Y.F.Y. Yao, Ceria in automotive exhaust catalysts: I.
oxygen storage, J. Catal., 86 (1984) 254–265.
- C. He, Y. Yu, C. Chen, L. Yue, N. Qiao, Q. Shen, J. Chen, Z. Hao,
Facile preparation of 3D ordered mesoporous CuOx-CeO2 with
notably enhanced efficiency for the low temperature oxidation
of heteroatom-containing volatile organic compounds, RSC
Adv., 3 (2013) 19639–19656.
- J. Fan, X. Wu, X. Wu, Q. Liang, R. Ran, D. Weng, Thermal ageing
of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides:
effect on the OSC performance, Appl. Catal., B, 81 (2008)
38–48.
- J. Zhu, Q. Gao, Z. Chen, Preparation of mesoporous copper
cerium bimetal oxides with high performance for catalytic
oxidation of carbon monoxide, Appl. Catal., B, 81 (2008) 236–243.
- S. Zeng, Y. Wang, K. Liu, F. Liu, H. Su, CeO2 nanoparticles supported
on CuO with petal-like and sphere-flower morphologies
for preferential CO oxidation, Int. J. Hydrogen Energy, 37
(2012) 11640–11649.
- Z. Song, P. Ning, Q. Zhang, X. Liu, J. Zhang, Y. Wang, Y. Duan,
Z. Huang, The role of surface properties of silicotungstic acid
doped CeO2 for selective catalytic reduction of NOx by NH3:
effect of precipitant, J. Mol. Catal. A: Chem.: Chemical, 413
(2016) 15–23.
- L. Jiang, H. Zhu, R. Razzaq, M. Zhu, C. Li, Z. Li, Effect
of zirconium addition on the structure and properties of
CuO/CeO2 catalysts for high-temperature water-gas shift in
an IGCC system, Int. J. Hydrogen Energy, 37 (2012) 15914–
15924.
- Q. Dai, H. Huang, Y. Zhu, W. Deng, S. Bai, X. Wang, G. Lu,
Catalysis oxidation of 1,2-dichloroethane and ethylacetate
over ceria nanocrystals with well-defined crystal planes, Appl.
Catal., B, 117–118 (2012) 360–368.
- M. Sun, L. Yu, J. Yu, Q. Yu, Z. Hao, Catalytic combustion of
dimethyl ether over Ce-doped cryptomelane type manganese
oxide, J. Fuel Chem. Technol., 38 (2010) 108–115.
- M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic
discolorization of methyl orange solution by Pt modified TiO2
loaded on natural zeolite, Dyes Pigments, 77 (2008) 327–334.