References

  1. A. Rubio-Clemente, R.A. Torres-Palma, G.A. Peñuela, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review, Sci. Total Environ., 478 (2014) 201–225.
  2. C. Wang, K. Ma, T. Wu, M. Ye, P. Tan, K. Yan, Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes, Chemosphere, 149 (2016) 219–223.
  3. S. Meyer, S. Cartellieri, H. Steinhart, Simultaneous determination of PAHs, hetero-PAHs (N, S, O), and their degradation products in creosote-contaminated soils. method development, validation, and application to hazardous waste sites, Anal. Chem., 71 (1999) 4023–4029.
  4. D. Rameshrajaa, V.C. Srivastavaa, J.P. Kushwahab, I.D. Malla, Quinoline adsorption onto granular activated carbon and bagasse fly ash, Chem. Eng. J., 181–182 (2012) 343– 351.
  5. B.U. Bohlmann, M. Bohnet, Improvement of process stability of microbiological quinoline degradation in a three-phase fluidized bed reactor, Chem. Eng. Technol., 2 (2001) 91–96.
  6. I. Weid, J.M. Marques, C.D. Cunha, R.K. Lippi, S.C.C. dos Santos, A.S. Rosado, U. Lins, L. Seldin, Identification and biodegradation potential of a novel strain of dietzia cinnamea isolated from a petroleum-contaminated tropical soil, Syst. Appl. Microbial., 30 (2007) 331–339.
  7. K. Sugaya, O. Nakayama, N. Hinata, K. Kamekura, A. Ito, Biodegradation of quinoline in crude oil, J. Chem. Technol. Biotechnol., 76 (2010) 603–611.
  8. L. Sun, B. Tuo, Q. Wang, J. Yan, Study on the isolation of bacteria for quinoline degradation and enhanced treatment of refining wastewater, Pet. Process Petroche., 43 (2012) 71–75.
  9. P. Zhang, X. Zhang, Y. Fang, Y. Lan, Adsorption characteristics of quinoline on activated carbon fiber, Chem. Ind. Eng. Prog., 32 (2013) 209–213.
  10. L.DS. Pinto, L.M.F. Santos, B. Al-Duri1, R.CD. Santos, Supercritical water oxidation of quinoline in a continuous plug flow reactor-part 1: effect of key operating parameters, J. Chem. Technol. Biotechnol., 81 (2006) 912–918.
  11. A. Chen, L. Zhang, F. Chang, Y. Ge, K. Wang, Degradation of quinoline from biotreated effluent with ozone-based advanced oxidation processes, Chinese J. Environ. Eng., 9 (2015) 5795– 5800.
  12. D.R. Stapleton, I.K. Konstantinou, A. Karakitsou, D.G. Hela, M. Papadaki, 2-Hydroxypyridine photolytic degradation by 254nm UV irradiation at different conditions, Chemosphere, 77 (2009) 1099–1105.
  13. R. Enriquez, P. Pichat, Interactions of humic acid, quinoline, and TiO2 in water in relation to quinoline photocatalytic removal, Langmuir, 17 (2001) 6132–6137.
  14. X. Xing, X. Zhu, H. Li, Y. Jiang, J. Ni, Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode, Chemosphere, 86 (2012) 368–375.
  15. A.B. Thomsen, F. Laturnus, The influence of different soil constituents on the reaction kinetics of wet oxidation of the creosote compound quinoline, J. Hazard. Mater., 81 (2001) 193–203.
  16. S. Navalon, M. Alvaro, H. Garcia, Heterogeneous fenton catalysts based on clays, silicas and zeolites, Appl. Catal., B, 99 (2010) 1–26.
  17. M. Kurian, D.S. Nair, A.M. Rahnamol, Influence of the synthesis conditions on the catalytic efficiency of NiFe2O4 and ZnFe2O4 nanoparticles towards the wet peroxide oxidation of 4-chlorophenol, React. Kinet. Catal. Lett., 111 (2014) 591–604.
  18. M. Kurian, C. Kunjachan, A. Sreevalsan, Catalytic degradation of chlorinated organic pollutants over CexFe1-xO2 (x: 0, 0.25, 0.5, 0.75, 1) nanocomposites at mild conditions, Chem. Eng. J., 308 (2017) 67–77.
  19. W. Wang, Q. Zhu, F. Qin, Q.G. Dai, X.Y. Wang, Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid, Chem. Eng. J., 333 (2018) 226–239.
  20. G. Lafaye, J.B. Jr., D. Duprez, Impact of cerium-based support oxides in catalytic wet air oxidation: conflicting role of redox and acid-base properties, Catal. Today, 253 (2015) 89–98.
  21. A.M.T. Silva, R.R.N. Marques, R.M. Quinta-Ferreira, Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks, Appl. Catal., B, 47 (2004) 269–279.
  22. S. Mnasri-Ghnimi, N. Frini-Srasra, Catalytic wet peroxide oxidation of phenol over Ce-Zr-modified clays: effect of the pillaring method, Korean J. Chem. Eng., 32 (2015) 68–73.
  23. A. Trovarelli, C.D. Leitenburg, M. Boaro, G. Dolcetti, The utilization of ceria in industrial catalysis, Catal. Today, 50 (1999) 353–367.
  24. J. Han, H.Y. Zeng, S. Xu, C.R. Chen, X.J. Liu, Catalytic properties of CuMgAlO catalyst and degradation mechanismin CWPO of methyl orange, Appl. Catal., A, 527 (2016) 72–80.
  25. S.S. Jiang, H.P. Zhang, Y. Yan, Cu-MFI zeolite supported on paper-like sintered stainless fiber for catalytic wet peroxide oxidation of phenol in a batch reactor, Sep. Purif. Technol., 90 (2018) 243–251.
  26. N. Inchaurrondo, J. Cechini, J. Font, P. Haure, Strategies for enhanced CWPO of phenol solutions, Appl. Catal., B, 111–112 (2012) 641–648.
  27. W. Liu, M. Flytzani-Stephanopoulos, Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite Catalysts: II. catalyst characterization and reaction-kinetics, J. Catal., 153 (1995) 317–332.
  28. Z. Liu, C. He, B. Chen, H. Liu, CuO-CeO2 mixed oxide catalyst for the catalytic decomposition of N2O in the presence of oxygen, Catal. Today, 5 (2017) 1–6.
  29. G. Zhou, H. Lan, T. Gao, H. Xie, Influence of Ce/Cu ratio on the performance of ordered mesoporous CeCu composite oxide catalysts, Chem. Eng. J., 246 (2014) 53–63.
  30. L. Shi, C.Y. Zeng, Q.H. Lin, P. Lu, W.Q. Niu, N. Tsubakib, Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts for Fischer-Tropsch synthesis, Catal. Today, 228 (2014) 206–211.
  31. X. Yang, F. Meng, G. Chen, X. Zhang, Synthesis and microstructures characterization of trigonometry-star-like CeO2, J. Synth. Cryst., 44 (2015) 44:3612.
  32. Y. Li, C. Wang, G. Liu, L. Zeng, Y. He, J. Zeng, Influence of additives on structure and performance of CeO2-ZrO2-Al2O3 composite oxide, Chin. J. Nonferrous. Met., 26 (2016) 1255–1263.
  33. U. Menon, H. Poelman, V. Bliznuk, V.V. Galvita, D. Poelman, G.B. Marin, Nature of the active sites for the total oxidation of toluene by CuOCeO2/Al2O3, J. Catal., 295 (2012) 91–103.
  34. H. Xie, Q. Du, H. Li, G. Zhou, S. Chen, Z. Jiao, J. Ren, Catalytic combustion of volatile aromatic compounds over CuO-CeO2 catalyst, Korean J. Chem. Eng., 34 (2017) 1944–1951.
  35. H.C. Yao, Y.F.Y. Yao, Ceria in automotive exhaust catalysts: I. oxygen storage, J. Catal., 86 (1984) 254–265.
  36. C. He, Y. Yu, C. Chen, L. Yue, N. Qiao, Q. Shen, J. Chen, Z. Hao, Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds, RSC Adv., 3 (2013) 19639–19656.
  37. J. Fan, X. Wu, X. Wu, Q. Liang, R. Ran, D. Weng, Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: effect on the OSC performance, Appl. Catal., B, 81 (2008) 38–48.
  38. J. Zhu, Q. Gao, Z. Chen, Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide, Appl. Catal., B, 81 (2008) 236–243.
  39. S. Zeng, Y. Wang, K. Liu, F. Liu, H. Su, CeO2 nanoparticles supported on CuO with petal-like and sphere-flower morphologies for preferential CO oxidation, Int. J. Hydrogen Energy, 37 (2012) 11640–11649.
  40. Z. Song, P. Ning, Q. Zhang, X. Liu, J. Zhang, Y. Wang, Y. Duan, Z. Huang, The role of surface properties of silicotungstic acid doped CeO2 for selective catalytic reduction of NOx by NH3: effect of precipitant, J. Mol. Catal. A: Chem.: Chemical, 413 (2016) 15–23.
  41. L. Jiang, H. Zhu, R. Razzaq, M. Zhu, C. Li, Z. Li, Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water-gas shift in an IGCC system, Int. J. Hydrogen Energy, 37 (2012) 15914– 15924.
  42. Q. Dai, H. Huang, Y. Zhu, W. Deng, S. Bai, X. Wang, G. Lu, Catalysis oxidation of 1,2-dichloroethane and ethylacetate over ceria nanocrystals with well-defined crystal planes, Appl. Catal., B, 117–118 (2012) 360–368.
  43. M. Sun, L. Yu, J. Yu, Q. Yu, Z. Hao, Catalytic combustion of dimethyl ether over Ce-doped cryptomelane type manganese oxide, J. Fuel Chem. Technol., 38 (2010) 108–115.
  44. M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigments, 77 (2008) 327–334.