References
- D. Wang, G. Alfthan, A. Aro, P. Lahermo, P. Väänänen, The
impact of selenium fertilisation on the distribution of selenium
in rivers in Finland, Agric. Ecosyst. Environ., 50 (1994)
133–149.
- J. Risher, Toxicological profile for selenium, ATSDR, 2003.
- J. HÖGberg, J.A.N. Alexander, In: M.S. Toprak, H.L. Karlsson,
and B. Fadeel, Handbook on the Toxicology of Metals, 3rd ed.,
Academic Press, Burlington 2014, pp. 783–807.
- P. Zhang, D.L. Sparks, Kinetics of selenate and selenite adsorption/
desorption at the goethite/water interface, Environ. Sci.
Technol., 24 (1990) 1848–1856.
- B. Alley, A. Beebe, J. Rodgers, J.W. Castle, Chemical and physical
characterization of produced waters from conventional
and unconventional fossil fuel resources, Chemosphere, 85
(2011) 74–82.
- M.P. De Souza, I.J. Pickering, M. Walla, N. Terry, Selenium
assimilation and volatilization from selenocyanate-treated
Indian mustard and muskgrass, Plant Physiol., 128 (2002) 625–
633.
- N. Aman, T. Mishra, J. Hait, R. Jana, Simultaneous photoreductive
removal of copper (II) and selenium (IV) under visible
light over spherical binary oxide photocatalyst, J. Hazard.
Mater., 186 (2011) 360–366.
- N. Bleiman, Y.G. Mishael, Selenium removal from drinking
water by adsorption to chitosan–clay composites and oxides:
batch and columns tests, J. Hazard. Mater., 183 (2010) 590–595.
- N. Geoffroy, G. Demopoulos, The elimination of selenium (IV)
from aqueous solution by precipitation with sodium sulfide, J.
Hazard. Mater., 185 (2011) 148–154.
- X. Hu, F. Wang, M.L. Hanson, Selenium concentration, speciation
and behavior in surface waters of the Canadian prairies,
Sci. Total Environ., 407 (2009) 5869–5876.
- A. Manceau, D.L. Gallup, Removal of selenocyanate in water
by precipitation: characterization of copper-selenium precipitate
by x-ray diffraction, infrared, and X-ray absorption spectroscopy,
Environ. Sci. Technol., 31 (1997) 968–976.
- S. Sharmasarkar, G.F. Vance, Selenite–selenate sorption in surface
coal mine environment, Adv. Environ. Res., 7 (2002) 87–95.
- J. Torres, V. Pintos, L. Gonzatto, S. Dominguez, C. Kremer, E.
Kremer, Selenium chemical speciation in natural waters: Protonation
and complexation behavior of selenite and selenate in
the presence of environmentally relevant cations, Chem. Geol.,
288 (2011) 32–38.
- N. Zhang, L.-S. Lin, D. Gang, Adsorptive selenite removal
from water using iron-coated GAC adsorbents, Water Res., 42
(2008) 3809–3816.
- Y. Zhang, C. Amrhein, A. Chang, W.T. Frankenberger, Effect of
zero-valent iron and a redox mediator on removal of selenium
in agricultural drainage water, Sci. Total Environ., 407 (2008)
89–96.
- E. Kikuchi, H. Sakamoto, Kinetics of the reduction reaction of
selenate ions by TiO2 photocatalyst, J. Electrochem. Soc., 147
(2000) 4589–4593.
- T.T. Tan, M. Zaw, D. Beydoun, R. Amal, The formation of nanosized
selenium–titanium dioxide composite semiconductors
by photocatalysis, J. Nanopart. Res., 4 (2002) 541–552.
- B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite
and selenate species: effect of EDTA and other process variables,
Environ. Technol., 35 (2014) 1091–1100.
- M.S. Vohra, Selenocyanate (SeCN–) contaminated wastewater
treatment using TiO2 photocatalysis: SeCN– complex destruction,
intermediates formation, and removal of selenium species,
Fresen. Environ. Bull., 24 (2015) 1108–1118.
- M. Kashiwa, S. Nishimoto, K. Takahashi, M. Ike, M. Fujita, Factors
affecting soluble selenium removal by a selenate-reducing bacterium
Bacillus sp. SF-1, J. Biosci. Bioeng., 89 (2000) 528–533.
- G. Banuelos, G. Cardon, B. Mackey, J. Ben-Asher, L. Wu, P.
Beuselinck, S. Akohoue, S. Zambrzuski, Boron and selenium
removal in boron-laden soils by four sprinkler irrigated plant
species, J. Environ. Qual., 22 (1993) 786–792.
- V. Mavrov, S. Stamenov, E. Todorova, H. Chmiel, T. Erwe, New
hybrid electrocoagulation membrane process for removing
selenium from industrial wastewater, Desalination, 201 (2006)
290–296.
- A.P. Murphy, Removal of selenate from water by chemical
reduction, Ind. Eng. Chem. Res., 27 (1988) 187–191.
- K. Shi, X. Wang, Z. Guo, S. Wang, W. Wu, Se (IV) sorption on
TiO2: Sorption kinetics and surface complexation modeling,
Colloid Surface A, 349 (2009) 90–95.
- K. Foo, B. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- Y.-S. Ho, Review of second-order models for adsorption systems,
J. Hazard. Mater., 136 (2006) 681–689.
- H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang, Q.-x. Zhang,
Critical review in adsorption kinetic models, J. Zhejiang Univ-
Sci. A, 10 (2009) 716–724.
- R. Schmuhl, K. Keizer, A. van den Berg, E. Johan, D.H. Blank,
Controlling the transport of cations through permselective mesoporous
alumina layers by manipulation of electric field and ionic
strength, J. Colloid Interface Sci., 273 (2004) 331–338.
- N.P. Cheremisinoff, P.N. Cheremisinoff, Carbon adsorption for
pollution control, PTR Prentice Hall, New York, USA 1993.
- C. Su, D.L. Suarez, Selenate and selenite sorption on iron
oxides an infrared and electrophoretic study, Soil Sci. Soc. Am.
J., 64 (2000) 101–111.
- U. Saha, C. Liu, L. Kozak, P. Huang, Kinetics of selenite
adsorption on hydroxyaluminum-and hydroxyaluminosilicate-
montmorillonite complexes, Soil Sci. Soc. Am. J., 68 (2004)
1197–1209.
- J.S. Yamani, A.W. Lounsbury, J.B. Zimmerman, Adsorption
of selenite and selenate by nanocrystalline aluminum oxide,
neat and impregnated in chitosan beads, Water Res., 50 (2014)
373–381.
- S. Li, N. Deng, Separation and preconcentration of Se (IV)/Se
(VI) species by selective adsorption onto nanometer-sized titanium
dioxide and determination by graphite furnace atomic
absorption spectrometry, Anal. Bioanal. Chem., 374 (2002)
1341–1345.
- V.N.H. Nguyen, D. Beydoun, R. Amal, Photocatalytic reduction
of selenite and selenate using TiO2 photocatalyst, J. Photochem.
Photobiol. A, 171 (2005) 113–120.
- V.N.H. Nguyen, R. Amal, D. Beydoun, Photocatalytic reduction
of selenium ions using different TiO2 photocatalysts,
Chem. Eng. Sci., 60 (2005) 5759–5769.
- S. Sanuki, K. Arai, T. Kojima, S. Nagaoka, H. Majima, Photocatalytic
reduction of selenate and selenite solutions using TiO2
powders, Metall. Mater. Trans. B., 30 (1999) 15–20.
- S. Sanuki, K. Shako, S. Nagaoka, H. Majima, Photocatalytic
reduction of Se ions using suspended anatase powders, Mater.
Trans. JIM, 41 (2000) 799–805.
- T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers
on the photocatalytic reduction of selenium anions, J. Photochem.
Photobiol. A, 159 (2003) 273–280.
- T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag
particles loading on TiO2 photocatalytic reduction of selenate
ions, Chem. Eng. J., 95 (2003) 179–186.
- T.T. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se
(VI) in aqueous solutions in UV/TiO2 system: importance of
optimum ratio of reactants on TiO2 surface, J. Mol. Catal. A, 202
(2003) 73–85.
- T.T. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se
(VI) in aqueous solutions in UV/TiO2 system: kinetic modeling
and reaction mechanism, J. Phys. Chem. B, 107 (2003) 4296–4303.
- G. Liu, J. Zhao, Photocatalytic degradation of dye sulforhodamine
B: a comparative study of photocatalysis with photosensitization,
New J. Chem., 24 (2000) 411–417.
- S. Pelet, J.-E. Moser, M. Grätzel, Cooperative effect of adsorbed
cations and iodide on the interception of back electron transfer
in the dye sensitization of nanocrystalline TiO2, J. Phys. Chem.
B, 104 (2000) 1791–1795.
- Y. Xu, C.H. Langford, UV- or visible-light-induced degradation
of X3B on TiO2 nanoparticles: the influence of adsorption,
Langmuir, 17 (2001) 897–902.
- J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka, N. Serpone, Photoassisted
degradation of dye pollutants. 3. Degradation of the
cationic dye rhodamine B in aqueous anionic surfactant/TiO2
dispersions under visible light irradiation: evidence for the
need of substrate adsorption on TiO2 particles, Environ. Sci.
Technol., 32 (1998) 2394–2400.
- F. Hingston, A. Posner, J. Quirk, Competitive adsorption of
negatively charged ligands on oxide surfaces, Discuss. Faraday
Soc., 52 (1971) 334–342.
- K.-H. Goh, T.-T. Lim, Geochemistry of inorganic arsenic and
selenium in a tropical soil: effect of reaction time, pH, and
competitive anions on arsenic and selenium adsorption, Chemosphere,
55 (2004) 849–859.
- C.-H. Wu, S.-L. Lo, C.-F. Lin, Competitive adsorption of molybdate,
chromate, sulfate, selenate, and selenite on γ-Al2O3, Colloid
Surface A, 166 (2000) 251–259.
- L.S. Balistrieri, T. Chao, Adsorption of selenium by amorphous
iron oxyhydroxide and manganese dioxide, Geochim. Cosmochim.
Acta, 54 (1990) 739–751.
- L.S. Balistrieri, T.T. Chao, Selenium adsorption by Goethite1,
Soil Sci. Soc. Am. J., 51 (1987) 1145–1151.
- K.F. Hayes, G. Redden, W. Ela, J.O. Leckie, Surface complexation
models: an evaluation of model parameter estimation
using FITEQL and oxide mineral titration data, J. Colloid Interface
Sci., 142 (1991) 448–469.
- M.S. Vohra, A.P. Davis, Adsorption of Pb (II), EDTA, and
Pb (II)-EDTA onto TiO2, J. Colloid Interface Sci., 198 (1998)
18–26.
- B.A. Labaran, Competitive Photocatalytic Removal of Aqueous
Phase Selenocyanate (SeCN–) in the Presence of Some Critical
Co-pollutants: Adsorption Modelling, Process Kinetics, and
Reaction Mechanisms, (Thesis, PhD) King Fahd University of
Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia,
May 2017.
- K.F. Hayes, A.L. Roe, G.E. Brown Jr, K.O. Hodgson, J.O. Leckie,
G.A. Parks, In situ X-ray absorption study of surface complexes:
selenium oxyanions on α-FeOOH, Science, 238 (1987)
783–786.
- P.V. Brady, The physics and chemistry of mineral surfaces, CRC
Press 1996.
- C. Papelis, G.E. Brown Jr, G.A. Parks, J.O. Leckie, X-ray absorption
spectroscopic studies of cadmium and selenite adsorption
on aluminum oxides, Langmuir, 11 (1995) 2041–2048.
- E.J. Boyle-Wight, L.E. Katz, K.F. Hayes, Macroscopic studies
of the effects of selenate and selenite on cobalt sorption to
γ-Al2O3, Environ. Sci. Technol., 36 (2002) 1212–1218.
- J. Huang, Z. Wu, L. Chen, Y. Sun, Surface complexation modeling
of adsorption of Cd (II) on graphene oxides, J. Mol. Liq., 209
(2015) 753–758.
- C. Papelis, P.V. Roberts, J.O. Leckie, Modeling the rate of cadmium
and selenite adsorption on micro-and mesoporous transition
aluminas, Environ. Sci. Technol., 29 (1995) 1099–1108.
- Y.Y. Gurkan, E. Kasapbasi, Z. Cinar, Enhanced solar photocatalytic
activity of TiO2 by selenium (IV) ion-doping: characterization
and DFT modeling of the surface, Chem. Eng. J., 214
(2013) 34–44.
- W.E. Sartz Jr, K.J. Wynne, D.M. Hercules, X-ray photoelectron
spectroscopic investigation of Group VIA elements, Anal.
Chem., 43 (1971) 1884–1887.
- K.S. Smith, Metal sorption on mineral surfaces: an overview
with examples relating to mineral deposits, Environ. Geochem.
Miner. Depos. B, 6 (1999) 161–182.
- S. Hamada, Acid decomposition equilibrium of selenocyanate
ion, Nippon Kagaku Zasshi, 82 (1961) 1327–1330.