References
- M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar,
Removal of Reactive Orange 12 from aqueous solutions by
adsorption on tin sulfide nanoparticle loaded on activated carbon,
J. Ind. Eng. Chem., 19 (2013) 756–763.
- T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation
of dyes in textile effluent: a critical review on current
treatment technologies with a proposed alternative, Bioresour.
Technol., 77 (2001) 247–255.
- I.L. Finar, Organic Chemistry: The Fundamental Princiles, 6th
ed., Addison Wesley Longman Ltd, England, 1986.
- C. Namasivayam, D. Kavitha, Removal of Congo Red from water
by adsorption onto activated carbon prepared from coir pith, an
agricultural solid waste, Dyes Pigments, 54 (2002) 47–58.
- A.B. dos Santos, I.A.E. Bisschops, F.J. Cervantes, J.B. van Lier,
Effect of different redox mediators during thermophilic azo
dye reduction by anaerobic granular sludge and comparative
study between mesophilic (30°C) and thermophilic (55°C)
treatments for decolourisation of textile wastewaters, Chemosphere,
55 (2004) 1149–1157.
- V. Shenai, Azo dyes on textiles vs German ban, an objective
assessment, Chem. Weekly, 12 (1996) 33–44.
- D. Brown, Effects of colorants in the aquatic environment, Ecotoxicol.
Environ. Safety, 13 (1987) 139–147.
- F. Gähr, F. Hermanutz, W. Oppermann, Ozonation – an important
technique to comply with new German laws for textile
wastewater treatment, Water Sci. Technol., 30 (1994) 255–263.
- K.-C. Chen, J.-Y. Wu, C.-C. Huang, Y.-M. Liang, S.-C.J. Hwang,
Decolorization of azo dye using PVA-immobilized microorganisms,
J. Biotechnol., 101 (2003) 241–252.
- A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Decoloration
treatment of a hazardous triarylmethane dye, Light
Green SF (Yellowish) by waste material adsorbents, J. Colloid
Interface Sci., 342 (2010) 518–527.
- R. Jain, S. Sikarwar, Adsorptive removal of erythrosine dye
onto activated low cost de-oiled mustard, J. Hazard. Mater.,
164 (2009) 627–633.
- Y. Zhu, P. Kolar, Adsorptive removal of p-cresol using coconut
shell-activated char, J. Environ. Chem. Eng., 2 (2014) 2050–2058.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal
of antibiotics from water and wastewater: Progress and challenges,
Sci. Total Environ., 532 (2015) 112–126.
- M. Wawrzkiewicz, M. Wiśniewska, V.M. Gun’ko, V.I. Zarko,
Adsorptive removal of acid, reactive and direct dyes from
aqueous solutions and wastewater using mixed silica–alumina
oxide, Powder Technol., 278 (2015) 306–315.
- M. Ghaedi, Comparison of cadmium hydroxide nanowires
and silver nanoparticles loaded on activated carbon as new
adsorbents for efficient removal of Sunset yellow: Kinetics and
equilibrium study, Spectrochim. Acta Part A: Molec. Biomolec.
Spectrosc., 94 (2012) 346–351.
- F. Haghseresht, S. Nouri, J.J. Finnerty, G.Q. Lu, Effects of surface
chemistry on aromatic compound adsorption from dilute
aqueous solutions by activated carbon, J. Phys. Chem. B, 106
(2002) 10935–10943.
- W. Wang, C.G. Silva, J.L. Faria, Photocatalytic degradation of
Chromotrope 2R using nanocrystalline TiO2/activated-carbon
composite catalysts, Appl. Catal. B: Environ., 70 (2007) 470–478.
- H. Choi, E. Stathatos, D.D. Dionysiou, Sol–gel preparation of
mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite
membranes for environmental applications, Appl. Catal. B:
Environ., 63 (2006) 60–67.
- J. Qiu, Z. Wang, H. Li, L. Xu, J. Peng, M. Zhai, C. Yang, J. Li,
G. Wei, Adsorption of Cr(VI) using silica-based adsorbent
prepared by radiation-induced grafting, J. Hazard. Mater., 166
(2009) 270–276.
- T. Yokoi, Y. Kubota, T. Tatsumi, Amino-functionalized mesoporous
silica as base catalyst and adsorbent, Appl. Catal. A:
General, 421–422 (2012) 14–37.
- M. Karthikeyan, K.K. Satheesh Kumar, K.P. Elango, Conducting
polymer/alumina composites as viable adsorbents for the
removal of fluoride ions from aqueous solution, J. Fluorine
Chem., 130 (2009) 894–901.
- M.E. Mahmoud, M.M. Osman, O.F. Hafez, A.H. Hegazi, E.
Elmelegy, Removal and preconcentration of lead (II) and other
heavy metals from water by alumina adsorbents developed by
surface-adsorbed-dithizone, Desalination, 251 (2010) 123–130.
- R.I. Yousef, B. El-Eswed, A.a.H. Al-Muhtaseb, Adsorption characteristics
of natural zeolites as solid adsorbents for phenol
removal from aqueous solutions: Kinetics, mechanism, and
thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
- L. Damjanović, V. Rakić, V. Rac, D. Stošić, A. Auroux, The investigation
of phenol removal from aqueous solutions by zeolites
as solid adsorbents, J. Hazard. Mater., 184 (2010) 477–484.
- F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number
as useful indicator to evaluate the adsorptive capacity of granular
activated carbon in batch mode: Influence of adsorbate/
adsorbent mass ratio and particle size, J. Hazard. Mater., 165
(2009) 291–299.
- C. Hung-Lung, L. Kuo-Hsiung, C. Shih-Yu, C. Ching-Guan, P.
San-De, Dye adsorption on biosolid adsorbents and commercially
activated carbon, Dyes Pigments, 75 (2007) 52–59.
- H. Meng, W. Hou, X. Xu, J. Xu, X. Zhang, TiO2-loaded activated
carbon fiber: Hydrothermal synthesis, adsorption properties
and photo catalytic activity under visible light irradiation, Particuology,
14 (2014) 38–43.
- E.-C. Su, B.-S. Huang, C.-C. Liu, M.-Y. Wey, Photocatalytic
conversion of simulated EDTA wastewater to hydrogen by
pH-resistant Pt/TiO2–activated carbon photocatalysts, Renew.
Energy, 75 (2015) 266–271.
- X. Fu, H. Yang, G. Lu, Y. Tu, J. Wu, Improved performance of
surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution, Mater.
Sci. Semicond. Process., 39 (2015) 362–370.
- J. Song, X. Wang, J. Huang, J. Ma, X. Wang, H. Wang, R. Ma,
P. Xia, J. Zhao, High performance of N-doped TiO2 magnetic
activated carbon composites under visible light illumination:
Synthesis and application in three-dimensional photoelectrochemical
process, Electrochim. Acta, 222 (2016) 1–11.
- M.A. Vishnuganth, N. Remya, M. Kumar, N. Selvaraju, Photocatalytic
degradation of carbofuran by TiO2-coated activated
carbon: Model for kinetic, electrical energy per order and economic
analysis, J. Environ. Manage., 181 (2016) 201–207.
- Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang, D.D.
Dionysiou, Microwave degradation of methyl orange dye in
aqueous solution in the presence of nano-TiO2-supported activated
carbon (supported-TiO2/AC/MW), J. Hazard. Mater.,
209–210 (2012) 271–277.
- M. Nasirian, M. Mehrvar, Modification of TiO2 to enhance
photocatalytic degradation of organics in aqueous solutions, J.
Environ. Chem. Eng., 4 (2016) 4072–4082.
- K. Pomoni, A. Vomvas, C. Trapalis, Dark conductivity and
transient photoconductivity of nanocrystalline undoped and
N-doped TiO2 sol–gel thin films, Thin Solid Films, 516 (2008)
1271–1278.
- M.I. Kandah, J.-L. Meunier, Removal of nickel ions from water
by multi-walled carbon nanotubes, J. Hazard. Mater., 146
(2007) 283–288.
- V. Gómez, M.S. Larrechi, M.P. Callao, Kinetic and adsorption
study of acid dye removal using activated carbon, Chemosphere,
69 (2007) 1151–1158.
- Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of
anatase TiO2 supported on porous solids by chemical vapor
deposition, Catal. Today, 68 (2001) 173–182.
- S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst
with high activity and easy separation prepared by a
hydrothermal method, J. Hazard. Mater., 143 (2007) 257–263.
- C. Ngamsopasiriskun, S. Charnsethikul, S. Thachepan, A.
Songsasen, Removal of phenol in aqueous solution by nanocrystalline
TiO2/activated carbon composite catalyst, Kasetsart
J. (Nat. Sci.), 44 (2010) 1176–1182.
- C.-C. Wang, J.Y. Ying, Sol−Gel synthesis and hydrothermal
processing of anatase and rutile titania nanocrystals, Chem.
Mater., 11 (1999) 3113–3120.
- A.C. Martins, A.L. Cazetta, O. Pezoti, J.R.B. Souza, T. Zhang,
E.J. Pilau, T. Asefa, V.C. Almeida, Sol-gel synthesis of new
TiO2/activated carbon photocatalyst and its application for
degradation of tetracycline, Ceramics Int., 43 (2017) 4411–
4418.
- R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, Preparation,
testing and characterization of doped TiO2 active in
the peroxidation of biomolecules under visible light, J. Phys.
Chem. B, 109 (2005) 5994–6003.
- P. Singh, M.C. Vishnu, K.K. Sharma, A. Borthakur, P. Srivastava,
D.B. Pal, D. Tiwary, P.K. Mishra, Photocatalytic degradation
of Acid Red dye stuff in the presence of activated
carbon-TiO2 composite and its kinetic enumeration, J. Water
Process Eng., 12 (2016) 20–31.
- Y. Shao, C. Cao, S. Chen, M. He, J. Fang, J. Chen, X. Li, D. Li,
Investigation of nitrogen doped and carbon species decorated
TiO2 with enhanced visible light photocatalytic activity by
using chitosan, Appl. Catal. B: Environ., 179 (2015) 344–351.
- J. Wang, W. Sun, Z. Zhang, Z. Jiang, X. Wang, R. Xu, R. Li, X.
Zhang, Preparation of Fe-doped mixed crystal TiO2 catalyst
and investigation of its sonocatalytic activity during degradation
of azo fuchsine under ultrasonic irradiation, J. Colloid
Interf. Sci., 320 (2008) 202–209.
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of
titanium dioxide, Progr. Solid State Chem., 32 (2004) 33–177.
- X. Quan, Y. Zhang, S. Chen, Y. Zhao, F. Yang, Generation of
hydroxyl radical in aqueous solution by microwave energy
using activated carbon as catalyst and its potential in removal
of persistent organic substances, J. Molec. Catal. A: Chemical,
263 (2007) 216–222.
- J. Wang, G. Zhang, Z. Zhang, X. Zhang, G. Zhao, F. Wen, Z.
Pan, Y. Li, P. Zhang, P. Kang, Investigation on photocatalytic
degradation of ethyl violet dyestuff using visible light in the
presence of ordinary rutile TiO2 catalyst doped with upconversion
luminescence agent, Water Res., 40 (2006) 2143–2150.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- S.H. Chien, W.R. Clayton, Application of Elovich equation to
the kinetics of phosphate release and sorption in soils, Soil Sci.
Soc. Amer. J., 44 (1980) 265–268.
- G. McKay, The adsorption of dyestuffs from aqueous solution
using activated carbon: Analytical solution for batch adsorption
based on external mass transfer and, Chem. Eng. J., 27
(1983) 187–196.
- E. Erdem, G. Çölgeçen, R. Donat, The removal of textile dyes
by diatomite earth, J. Colloid Interf. Sci., 282 (2005) 314–319.
- A. Dąbrowski, Adsorption - from theory to practice, Adv. Colloid
Interf. Sci., 93 (2001) 135–224.
- Y.-S. Ho, A.E. Ofomaja, Kinetics and thermodynamics of lead
ion sorption on palm kernel fibre from aqueous solution, Process
Biochem., 40 (2005) 3455–3461.
- A. Rodríguez, J. García, G. Ovejero, M. Mestanza, Adsorption
of anionic and cationic dyes on activated carbon from aqueous
solutions: Equilibrium and kinetics, J. Hazard. Mater., 172
(2009) 1311–1320.
- H. Freundlich, W. Heller, The Adsorption of cis- and trans-Azobenzene,
J. Amer. Chem. Soc., 61 (1939) 2228–2230.
- X.-s. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+
on rice bran, Process Biochem., 40 (2005) 677–680.
- C. Aharoni, S. Levinson, I. Ravina, D.L. Sparks, Kinetics of soil
chemical reactions: relationships between empirical equations
and diffusion models, Soil Sci. Soc. Amer. J., 55 (1991) 1307–1312.