References
- G.G. Ying, B. Williams, R. Kookana, Environmental fate of
alkylphenols and alkylphenol ethoxylates–a review, Environ.
Int., 28 (2002) 215–226.
- G.G. Ying, Fate behavior and effects of surfactants and their
degradation products in the environment, Environ. Int., 32
(2006) 417–431.
- V.K. Sharma, G.A.K. Anquandah, R.A. Yngard, H. Kim, J.
Fekete, K. Bouzek, A.K. Ray, D. Golovko, Nonylphenol, octylphenol,
and bisphenol-A in the aquatic environment: a review
on occurrence, fate, and treatment, J. Environ. Sci. Health, Part
A., 44 (2009) 423–442.
- N. Bai, R. Abuduaini, S. Wang, M. Zhang, X. Zhu, Y. Zhao,
Nonylphenol biodegradation characterizations and bacterial
composition analysis of an effective consortium NP-M2, Environ.
Pollut., 220 (2017) 95–104.
- G. Newcombe, M. Drikas, R. Hayes, Influence of characterised
natural organic material on activated carbon adsorption:
II. Effect on pore volume distribution and adsorption of
2-methylisoborneol, Water Res., 31 (1997) 1065–1073.
- C. Pelekani, V.L. Snoeyink, Competitive adsorption in natural
water: role of activated carbon pore size, Water Res., 33 (1999)
1209–1219.
- S. Yoshihara, M. Murugananthan, Decomposition of various
endocrine-disrupting chemicals at boron-doped diamond
electrode, Electrochim. Acta, 54 (2009) 2031–2038.
- M. Iqbal, I.A. Bhatti, Gamma radiation/H2O2 treatment of a
nonylphenol ethoxylates: degradation, cytotoxicity, and mutagenicity
evaluation, J. Hazard. Mater., 299 (2015) 351–360.
- J. Lu, Q. Jin, Y. He, J. Wu, Biodegradation of nonylphenol polyethoxylates
under Fe(III)-reducing conditions, Chemosphere,
69 (2007) 1047–1054.
- T. Koottatep, K. Fakkaew, N. Tajai, S.V. Pradeep, C. Polprasert,
Sludge stabilization and energy recovery by hydrothermal carbonization
process, Renew. Energy, 99 (2016) 978–985.
- Q. Zheng, M. Morimoto, T. Takanohashi, Finding of coal
organic microspheres during hydrothermal treatment of
brown coal, Fuel, 195 (2017) 143–150.
- M. Morimoto, H. Nakagawa, K. Miura, Hydrothermal
extraction and hydrothermal gasification process for brown
coal conversion, Fuel, 87 (2008) 546–551.
- R. Dong, Y. Zhang, L.L. Christianson, T.L. Funk, X. Wang, Z.
Wang, M. Minarick, G. Yu, Product distribution and implication
of hydrothermal conversion of swine manure at low temperatures,
Trans. ASABE, 52 (2009) 1239–1248.
- B.M. Ghanim, W. Kwapinski, J.J. Leahy, Hydrothermal carbonisation
of poultry litter: Effects of initial pH on yields and
chemical properties of hydrochars, Bioresour. Technol., 238
(2017) 78–85.
- W. Yang, T. Shimanouchi, Y. Kimura, Characterization of
hydrochar prepared from hydrothermal carbonization of
peels of Carya cathayensis sarg, Desal. Water Treat., 53 (2015)
2831–2838.
- N.U. Saqib, M. Oh, W. Jo, S.-K. Park, J.-Y. Lee, Conversion of dry
leaves into hydrochar through hydrothermal carbonization
(HTC), J. Mater. Cycles Waste Manag., 19 (2017) 111–117.
- N.D. Berge, K.S. Ro, J. Mao, J.R.V. Flora, M.A. Chappell, S. Bae,
Hydrothermal carbonization of municipal waste streams,
Environ. Sci. Technol., 45 (2011) 5696–5703.
- M. Goto, R. Obuchi, T. Hirose, T. Sakaki, M. Shibata, Hydrothermal
conversion of municipal organic waste into resources,
Bioresour. Technol., 93 (2004) 279–284.
- D.A.D. Genuino, M.D.G. de Luna, S.C. Capareda, Improving
the surface properties of municipal solid waste-derived pyrolysis
biochar by chemical and thermal activation: Optimization
of process parameters and environmental application, Waste
Manage., 72 (2018) 255–264.
- S.M. Heilmann, H.T. Davis, L.R. Jader, P.A. Lefebvre, M.J. Sadowsky,
F.J. Schendel, M.G. von Keitz, K.J. Valentas, Hydrothermal
carbonization of microalgae, Biomass Bioenergy, 34 (2010)
875–882.
- L.G. Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S.R.A.
Kersten, D.W.F. Brilman, Hydrothermal treatment (HTT) of
microalgae: evaluation of the process as conversion method in
an algae biorefinery concept, Energy Fuels, 26 (2012) 642–657.
- M. Sevilla, W. Gu, C. Falco, M.M. Titirici, A.B. Fuertes, G.
Yushin, Hydrothermal synthesis of microalgae-derived
microporous carbons for electrochemical capacitors, J. Power
Sources, 267 (2014) 26–32.
- S.M. Heilmann, L.R. Jader, M.J. Sadowsky, F.J. Schendel, M.G.
von Keitz, K.J. Valentas, Hydrothermal carbonization of distiller’s
grains, Biomass Bioenergy, 35 (2011) 2526–2533.
- Q. Li, Y. Gao, J. Lang, W. Ding, Y. Yong, Removal of Pb(II) and
Cu(II) from aqueous solutions by ultraviolet irradiation-modified
biochar, Desal. Water Treat., 82 (2017) 179–187.
- M.A. Islam, I.A.W. Tan, A. Benhouria, M. Asif, B.H. Hameed,
Mesoporous and adsorptive properties of palm date seed activated
carbon prepared via sequential hydrothermal carbonization
and sodium hydroxide activation, Chem. Eng. J., 270
(2015) 187–195.
- J. Poerschmann, B. Weiner, I. Baskyr, Organic compounds in
olive mill wastewater and in solutions resulting from hydrothermal
carbonization of the wastewater, Chemosphere, 92
(2013) 1472–1482.
- J. Poerschmann, B. Weiner, S. Woszidlo, R. Koehler, F.-D. Kopinke,
Hydrothermal carbonization of poly(vinyl chloride),
Chemosphere, 119 (2015) 682–689.
- B. Weiner, I. Baskyr, J. Poerschmann, F.-D. Kopinke, Potential
of the hydrothermal carbonization process for the degradation
of organic pollutants, Chemosphere, 92 (2013) 674–680.
- Y. Ge, W. Zhang, G. Xue, J. Zhao, Carbonization of chlorinated
organic residual liquid for energy source generation, J. Mater.
Sci. Chem. Eng., 3 (2015) 95–103.
- M. Kruk, M. Jaroniec, Gas adsorption characterization of
ordered organic-inorganic nanocomposite materials, Chem.
Mater., 13 (2001) 3169–3183.
- P. Gao, Y. Zhou, F. Meng, Y. Zhang, Z. Liu, W. Zhang, G. Xue,
Preparation and characterization of hydrochar from waste
eucalyptus bark by hydrothermal carbonization, Energy, 97
(2016) 238–245.
- Y. Ge, W. Zhang, G. Xue, P. Rao, Hydrothermal carbonization
of nonylphenol ethoxylates waste liquid for energy source generation,
Am. J. Anal. Chem., 6 (2015) 1059–1066.
- Y. Huang, W. Liu, W. Wang, Q. Feng, J. Liu, Synthesis of a carbon@
Rectorite nanocomposite adsorbent by a hydrothermal
carbonization process and their application in the removal of
methylene blue and neutral red from aqueous solutions, Desal.
Water Treat., 57 (2015) 13573–13585.
- J. Mosa, A. Durán, M. Aparicio, Sulfonic acid-functionalized
hybrid organic-inorganic proton exchange membranes synthesized
by sol-gel using 3-mercaptopropyl trimethoxysilane
(MPTMS), J. Power Sources, 297 (2015) 208–216.
- M. Li, W. Li, S. Liu, Hydrothermal synthesis, characterization,
and KOH activation of carbon spheres from glucose, Carbohydr.
Res., 346 (2011) 999–1004.
- Y. Gao, X. Wang, J. Wang, X. Li, J. Cheng, H. Yang, H. Chen,
Effect of residence time on chemical and structural properties
of hydrochar obtained by hydrothermal carbonization of
water hyacinth, Energy, 58 (2013) 376–383.
- M. Xie, K. Fang, Y. Shen, Y. Wang, J. Liang, L. Peng, X. Guo,
W. Ding, Catalytic hydroxylation enables phenol to efficient
assembly of ordered mesoporous carbon under highly acidic
conditions, Micropor. Mesopor. Mater., 223 (2016) 114–120.