References

  1. G.G. Ying, B. Williams, R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates–a review, Environ. Int., 28 (2002) 215–226.
  2. G.G. Ying, Fate behavior and effects of surfactants and their degradation products in the environment, Environ. Int., 32 (2006) 417–431.
  3. V.K. Sharma, G.A.K. Anquandah, R.A. Yngard, H. Kim, J. Fekete, K. Bouzek, A.K. Ray, D. Golovko, Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment, J. Environ. Sci. Health, Part A., 44 (2009) 423–442.
  4. N. Bai, R. Abuduaini, S. Wang, M. Zhang, X. Zhu, Y. Zhao, Nonylphenol biodegradation characterizations and bacterial composition analysis of an effective consortium NP-M2, Environ. Pollut., 220 (2017) 95–104.
  5. G. Newcombe, M. Drikas, R. Hayes, Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol, Water Res., 31 (1997) 1065–1073.
  6. C. Pelekani, V.L. Snoeyink, Competitive adsorption in natural water: role of activated carbon pore size, Water Res., 33 (1999) 1209–1219.
  7. S. Yoshihara, M. Murugananthan, Decomposition of various endocrine-disrupting chemicals at boron-doped diamond electrode, Electrochim. Acta, 54 (2009) 2031–2038.
  8. M. Iqbal, I.A. Bhatti, Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: degradation, cytotoxicity, and mutagenicity evaluation, J. Hazard. Mater., 299 (2015) 351–360.
  9. J. Lu, Q. Jin, Y. He, J. Wu, Biodegradation of nonylphenol polyethoxylates under Fe(III)-reducing conditions, Chemosphere, 69 (2007) 1047–1054.
  10. T. Koottatep, K. Fakkaew, N. Tajai, S.V. Pradeep, C. Polprasert, Sludge stabilization and energy recovery by hydrothermal carbonization process, Renew. Energy, 99 (2016) 978–985.
  11. Q. Zheng, M. Morimoto, T. Takanohashi, Finding of coal organic microspheres during hydrothermal treatment of brown coal, Fuel, 195 (2017) 143–150.
  12. M. Morimoto, H. Nakagawa, K. Miura, Hydrothermal extraction and hydrothermal gasification process for brown coal conversion, Fuel, 87 (2008) 546–551.
  13. R. Dong, Y. Zhang, L.L. Christianson, T.L. Funk, X. Wang, Z. Wang, M. Minarick, G. Yu, Product distribution and implication of hydrothermal conversion of swine manure at low temperatures, Trans. ASABE, 52 (2009) 1239–1248.
  14. B.M. Ghanim, W. Kwapinski, J.J. Leahy, Hydrothermal carbonisation of poultry litter: Effects of initial pH on yields and chemical properties of hydrochars, Bioresour. Technol., 238 (2017) 78–85.
  15. W. Yang, T. Shimanouchi, Y. Kimura, Characterization of hydrochar prepared from hydrothermal carbonization of peels of Carya cathayensis sarg, Desal. Water Treat., 53 (2015) 2831–2838.
  16. N.U. Saqib, M. Oh, W. Jo, S.-K. Park, J.-Y. Lee, Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC), J. Mater. Cycles Waste Manag., 19 (2017) 111–117.
  17. N.D. Berge, K.S. Ro, J. Mao, J.R.V. Flora, M.A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol., 45 (2011) 5696–5703.
  18. M. Goto, R. Obuchi, T. Hirose, T. Sakaki, M. Shibata, Hydrothermal conversion of municipal organic waste into resources, Bioresour. Technol., 93 (2004) 279–284.
  19. D.A.D. Genuino, M.D.G. de Luna, S.C. Capareda, Improving the surface properties of municipal solid waste-derived pyrolysis biochar by chemical and thermal activation: Optimization of process parameters and environmental application, Waste Manage., 72 (2018) 255–264.
  20. S.M. Heilmann, H.T. Davis, L.R. Jader, P.A. Lefebvre, M.J. Sadowsky, F.J. Schendel, M.G. von Keitz, K.J. Valentas, Hydrothermal carbonization of microalgae, Biomass Bioenergy, 34 (2010) 875–882.
  21. L.G. Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S.R.A. Kersten, D.W.F. Brilman, Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept, Energy Fuels, 26 (2012) 642–657.
  22. M. Sevilla, W. Gu, C. Falco, M.M. Titirici, A.B. Fuertes, G. Yushin, Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors, J. Power Sources, 267 (2014) 26–32.
  23. S.M. Heilmann, L.R. Jader, M.J. Sadowsky, F.J. Schendel, M.G. von Keitz, K.J. Valentas, Hydrothermal carbonization of distiller’s grains, Biomass Bioenergy, 35 (2011) 2526–2533.
  24. Q. Li, Y. Gao, J. Lang, W. Ding, Y. Yong, Removal of Pb(II) and Cu(II) from aqueous solutions by ultraviolet irradiation-modified biochar, Desal. Water Treat., 82 (2017) 179–187.
  25. M.A. Islam, I.A.W. Tan, A. Benhouria, M. Asif, B.H. Hameed, Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation, Chem. Eng. J., 270 (2015) 187–195.
  26. J. Poerschmann, B. Weiner, I. Baskyr, Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater, Chemosphere, 92 (2013) 1472–1482.
  27. J. Poerschmann, B. Weiner, S. Woszidlo, R. Koehler, F.-D. Kopinke, Hydrothermal carbonization of poly(vinyl chloride), Chemosphere, 119 (2015) 682–689.
  28. B. Weiner, I. Baskyr, J. Poerschmann, F.-D. Kopinke, Potential of the hydrothermal carbonization process for the degradation of organic pollutants, Chemosphere, 92 (2013) 674–680.
  29. Y. Ge, W. Zhang, G. Xue, J. Zhao, Carbonization of chlorinated organic residual liquid for energy source generation, J. Mater. Sci. Chem. Eng., 3 (2015) 95–103.
  30. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater., 13 (2001) 3169–3183.
  31. P. Gao, Y. Zhou, F. Meng, Y. Zhang, Z. Liu, W. Zhang, G. Xue, Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization, Energy, 97 (2016) 238–245.
  32. Y. Ge, W. Zhang, G. Xue, P. Rao, Hydrothermal carbonization of nonylphenol ethoxylates waste liquid for energy source generation, Am. J. Anal. Chem., 6 (2015) 1059–1066.
  33. Y. Huang, W. Liu, W. Wang, Q. Feng, J. Liu, Synthesis of a carbon@ Rectorite nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of methylene blue and neutral red from aqueous solutions, Desal. Water Treat., 57 (2015) 13573–13585.
  34. J. Mosa, A. Durán, M. Aparicio, Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS), J. Power Sources, 297 (2015) 208–216.
  35. M. Li, W. Li, S. Liu, Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose, Carbohydr. Res., 346 (2011) 999–1004.
  36. Y. Gao, X. Wang, J. Wang, X. Li, J. Cheng, H. Yang, H. Chen, Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth, Energy, 58 (2013) 376–383.
  37. M. Xie, K. Fang, Y. Shen, Y. Wang, J. Liang, L. Peng, X. Guo, W. Ding, Catalytic hydroxylation enables phenol to efficient assembly of ordered mesoporous carbon under highly acidic conditions, Micropor. Mesopor. Mater., 223 (2016) 114–120.