References
- N. Savage, M.S. Diallo, Nanomaterials and water purification:
Opportunities and challenges, J. Nanopart. Res., 7 (2005) 331–342.
- R. Das, Md.E. Ali, S. Bee, A. Hamid, S. Ramakrishna, Z.Z.
Chowdhury, Carbon nanotube membranes for water purification:
A bright future in water desalination, Desalination, 336
(2014) 97–109.
- K. Ritos, D. Mattia, F. Calabrò, J.M. Reese, Flow enhancement
in nanotubes of different materials and lengths, J. Chem. Phys.,
140 (2014) 014702.
- P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination:
Performance evaluation and current hurdles, Desalination,
308 (2013) 2–14.
- J.H. Walther, K. Ritos, E.R. Cruz-Chu, C.M. Megaridis, P. Koumoutsakos,
Barriers to superfast water transport in carbon
nanotube membranes, Nano Lett., 13 (2013) 1910–1914.
- M. Borg, J. Reese, Multiscale simulation of enhanced water
flow in nanotubes, MRS Bulletin, 42 (2017) 294–299.
- W. Li, W. Wang, Y. Zhang, Y. Yan, P. Kral, J. Zhang, Highly
efficient water desalination in carbon nanocones, Carbon, 129
(2018) 374–379.
- S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination
by ion concentration polarization, Nature Nanotech., 5
(2010) 297–301.
- J. Li, Y. Long, C. Xu, H. Tian, Y. Wu, F. Zha, Continuous, highflux
and efficient oil/water separation assisted by an integrated
system with opposite wettability, Appl. Surf. Sci., 433
(2018) 374–380.
- K.P. Travis, K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids
in narrow slit pores, J. Chem. Phys., 112 (1999) 1984–1994.
- J. Delhommelle, D.J. Evans, Configurational temperature profile
in confined fluids. I. Atomic fluid, J. Chem. Phys., 114 (2001)
6229–6235.
- F. Sofos, T. Karakasidis, A. Liakopoulos, Non-equilibrium
molecular dynamics investigation of parameters affecting planarnanochannel
flows, Cont. Eng. Sci., 2 (2009) 283–298.
- W.D. Nicholls, M.K. Borg, D.A. Lockerby, J.M. Reese, Water
transport through (7,7) carbon nanotubes of different lengths
using molecular dynamics, Microfluid. Nanofluid., 12 (2012)
257–264.
- J. Su, H. Guo, Effect of nanochannel dimension on the
transport of water molecules, J. Phys. Chem. B, 116 (2012)
5925−5932.
- A.T. Celebi, M. Barisik, A. Beskok, Surface charge dependent
transport of water in graphene nano channels, Microfluid,
Nanofluid., 22 (2018) 7.
- D. Kasiteropoulou, T.E. Karakasidis, A. Liakopoulos, Dissipative
particle pynamics investigation of parameters affecting
planar nanochannel flows, Mater. Sci. Eng., B 176 (2010) 176–
179.
- M. Kalweit, D. Drikakis, Coupling strategies for hybrid molecular-
continuum simulation methods, Proc. IMechE Part C: J.
Mech. Eng. Sci., 222 (2008) 797–806.
- N. Asproulis, D. Drikakis, An artificial neural network based
multiscale method for hybrid atomistic-continuum simulations,
Microfluid. Nanofluid., 15 (2013) 559–574.
- P. Koumoutsakos, Multiscale flow simulations using particles,
Annu. Rev. Fluid Mech., 37 (2005) 457–487.
- H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term
in effective pair potentials, J. Phys. Chem., 91 (1987) 6269–6271.
- Y. Wu, H.L. Tepper, G.A. Voth, Flexible simple point-charge
water model with improved liquid-state properties, J. Chem.
Phys., 124 (2006) 024503.
- F. Paesani, W. Zhang, D.A. Case, T.E. Cheatham, G.A. Voth, An
accurate and simple quantum model for liquid water, J. Chem.
Phys., 125 (2006) 184507.
- W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey,
M.L. Klein, Comparison of simple potential functions for simulating
liquid water, J. Chem. Phys., 79 (1983) 926.
- D.J. Price, C.L. Brooks, A modified TIP3P water potential for
simulation with Ewald summation, J. Chem. Phys., 121 (2004)
10096.
- J.L.F. Abascal, C. Vega, A general purpose model for the condensed
phases of water: TIP4P/2005, J. Chem. Phys., 123 (2005)
234505.
- A.P. Markesteijn, R. Hartkamp, S. Luding, J. Westerweel, A
comparison of the value of viscosity for several water models
using Poiseuille flow in a nano-channel, J. Chem. Phys., 136
(2012) 134104.
- M. Orsi, Comparative assessment of the ELBA coarse-grained
model for water, Mol. Phys., 112 (2014) 1566–1576.
- S. Chodankar, E. Perret, K. Nygård, O. Bunk, D.K. Satapathy,
R.M. Espinosa Marzal, T.E. Balmer, M. Heuberger, J.F. van der
Veen, Density profile of water in nanoslit, Europhys. Lett., 99
(2012) 26001.
- F. Sedlmeier, D. Horinek, R.R. Netz, Nanoroughness, intrinsic
density profile, and rigidity of the air-water interface, Phys.
Rev. Lett., 103 (2009) 136102.
- J. Horbach, S. Succi, Lattice-Boltzmann versus molecular
dynamics simulation of nanoscale hydrodynamic flows, Phys.
Rev. Lett., 96 (2006) 224503.
- X.Y. Liu, M.G. He, Y. Zhang, Viscosity of water in the region
around the critical point, J. Supercrit. Fluids, 63 (2012) 150–154.
- J.S. Medina, R. Prosmiti, P. Villareal, G. Delgado-Barrio,
G. Winter, B. Gonzalez, J.V. Aleman, C. Collado, Molecular
dynamics simulations of rigid and flexible water models: Temperature
dependence of viscosity, Chem. Phys., 388 (2011) 9–18.
- G.S. Fanourgakis, J. Medina, R. Prosmiti, Determining the
bulk viscosity of rigid water models, J. Phys. Chem., A, 116
(2012) 2564–2570.
- F. Bresme, F. Romer, Heat transport in liquid water at extreme
pressures: A non equilibrium molecular dynamics study, J.
Mol. Liq., 185 (2013) 1–7.
- D. Arismendi-Arrieta, J.S. Medina, G.S. Fanourgakis, R. Prosmiti,
G. Delgado-Barrio, Simulating liquid water for determining
its structural and transport properties, Appl. Radiat. Isot.,
83 (2014) 115–121.
- K. Deepak, M. Frank, D. Drikakis, N. Asproulis, Thermal
properties of a water-copper nanofluid in a graphene channel,
J. Comput. Theor. Nanosci., 13 (2016) 79–83.
- M. Frank, D. Drikakis, Solid-like heat transfer in confined liquids,
Microfluid. Nanofluid., 21 (2017) 148.
- M.E. Caplan, A. Giri, P.E. Hopkins, Analytical model for the
effects of wetting on the thermal boundary conductance
across solid/classical liquid interfaces, J. Chem. Phys., 140
(2014) 154701.
- B. Ramos-Alvarado, S. Kumar, G.P. Peterson, Solid-liquid
thermal transport and its relationship with wettability and
the interfacial liquid structure, J. Phys. Chem. Lett., 7 (2016)
3497–3501.
- N.V. Priezjev, Effect of surface roughness on rate-dependent
slip in simple fluids, J. Chem. Phys., 127 (2007) 144708.
- C. Zhang, Y. Chen, Slip behavior of liquid flow in rough nanochannels,
Chem. Eng. Process.: Process Intensif., 85 (2014) 203–
208.
- N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness
on the slip behavior at liquid/solid interfaces: Molecular-scale
simulations versus continuum predictions, J. Fluid Mech., 554
(2006) 25–46.
- M. Papanikolaou, M. Frank, D. Drikakis, Nanoflow over a fractal
surface, Phys. Fluids, 28 (2016) 082001.
- C. Sendner, D. Horinek, L. Bocquet, R.R. Netz, Interfacial water
at hydrophobic and hydrophilic surfaces: slip, viscosity, and
diffusion, Langmuir, 25 (2009) 10768.
- M. Sega, M. Sbragaglia, L. Biferale, S. Succi, Regularization
of the slip length divergence in water nanoflows by inhomogeneities
at the Angstrom scale, Soft. Matter., 9 (2013)
8526–8531.
- O.I. Vinogradova, A.V. Belyaev, Wetting, roughness and
flow boundary conditions, J. Phys.-Condens Mat., 23 (2011)
184104.
- W. Humphrey, A. Dalke, K. Schulten, VMD – visual molecular
dynamics, J. Molec. Graphics, 14(1) (1996) 33–38.
- C. Vega, J.L.F. Abascal, Simulating water with rigid non-polarizable
models: a general perspective, Phys. Chem. Chem.
Phys., 13 (2011) 19663–19668.
- S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys., 117 (1995) 1–19.
- J.S. Hansen, J.T. Ottesen, Molecular dynamics simulations of
oscillatory flows in microfluidic channels, Microfluid. Nanofluid.,
2 (2006) 301–307.
- K.P. Travis, K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids
in narrow slit pores, J. Chem. Phys., 112 (2000) 1984–1994.
- K.P. Travis, B.D. Todd, D.J. Evans, Departure from Navier-Stokes hydrodynamics in confined liquids, Phys. Rev., E 55
(1997) 4288–4295.
- Y. Mao, Y. Zhang, Thermal conductivity, shear viscosity and
specific heat of rigid water models, Chem. Phys. Lett., 542
(2012) 37–41.
- B.D. Todd, D.J. Evans, Temperature profile for Poiseuille flow,
Phys. Rev., E 55 (1997) 2800–2807.
- S. Bernardi, B.D. Todd, D.J. Searles, Thermostating highly confined
liquids, J. Chem. Phys., 132 (2010) 244706.
- B.Y. Cao, J. Sun, M. Chen, Z.Y. Guo, Molecular momentum
transport at fluid-solid interfaces in MEMS/NEMS: A review,
Int. J. Mol. Sci., 10 (2009) 4638–4706.
- F. Sofos, T. Karakasidis, A. Liakopoulos, Parameters affecting
slip length at the nanoscale, J. Comput. Theor. Nanosci., 10
(2013) 1–3.
- A. Niavarani, N.V. Priezjev, Modeling the combined effect of
surface roughness and shear rate on slip flow of simple fluids,
Phys. Rev., E81 (2010) 011606.