References

  1. J.S. Vrouwenvelder, S.M. Bakker, L.P. Wessels, J.A.M. van Paassen, The Membrane fouling simulator as a new tool for biofouling control of spiral-wound membranes, Desalination, 204 (2007) 170–174.
  2. J.S. Vrouwenvelder, S.A. Manolarakis, J.P. van der Hoek, J.A. van Paassen, W.G. van der Meer, J.M. van Agtmaal, H.D. Prummel, J.C. Kruithof, M.C. van Loosdrecht, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations, Water Res., 42 (2008) 4856–4868.
  3. J.S. Vrouwenvelder, C. Hinrichs, A.R. Sun, F. Royer, J.A.M. van Paassen, S.M. Bakker, W.G.J. van der Meer, J.C. Kruithof, M.C.M. van Loosdrecht, Monitoring and control of biofouling in nanofiltration and reverse osmosis membranes, Water Sci. Technol. Water Supply, 8 (2008) 449–458.
  4. J.S. Vrouwenvelder, J.A.M. van Paassen, L.P. Wessels, A.F. van Dama, S.M. Bakker, The membrane fouling simulator: a practical tool for fouling prediction and control, J. Membr. Sci., 281 (2006) 316–324.
  5. A. Siddiqui, I. Pinel, E.I. Prest, S.S. Bucs, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Application of DBNPA dosage for biofouling control in spiral wound membrane systems, Desal. Wat. Treat., 68 (2017) 12–22.
  6. L.N. Sim, T.H. Chong, A.H. Taheri, S.T.V. Sim, L. Lai, W.B. Krantz, A.G. Fane, A review of fouling indices and monitoring techniques for reverse osmosis, Desalination, 434 (2018) 169–188.
  7. A.J. Karabelas, M. Kostoglou, C.P. Koutsou, Modeling of spiral wound membrane desalination modules and plants – review and research priorities, Desalination, 356 (2015) 165–186.
  8. H.-C. Flemming, Mechanistic Aspects of Reverse Osmosis Membrane Biofouling and Prevention, Van Nostrand Reinhold, New York, 1993.
  9. H.F. Ridgway, A. Kelly, C. Justice, B.H. Olson, Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: Chemical, bacteriological, and ultrastructural analyses, Appl. Environ. Microbiol., 45 (1983) 1066–1084.
  10. K. Tasaka, T. Katsura, H. Iwahori, Y. Kamiyama, Analysis of RO elements operated at more than 80 plants in Japan, Desalination, 96 (1994) 259–272.
  11. J.S. Baker, L.Y. Dudley, Biofouling in membrane systems — a review, Desalination, 118 (1998) 81–89.
  12. R. Schneider, L. Ferreira, P. Binder, E. Bejarano, K. Goes, E. Slongo, C. Machado, G. Rosa, Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling, J. Membr. Sci., 266 (2005) 18–29.
  13. H.F. Ridgway, H.F. Flemming, Membrane Biofouling, McGraw-Hill, 1996.
  14. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  15. L.N. Sim, Z.J. Wang, J. Gu, H.G.L. Coster, A.G. Fane, Detection of reverse osmosis membrane fouling with silica, bovine serum albumin and their mixture using in-situ electrical impedance spectroscopy, J. Membr. Sci., 443 (2013) 45–53.
  16. A. Al Ashhab, M. Herzberg, O. Gillor, Biofouling of reverseosmosis membranes during tertiary wastewater desalination: microbial community composition, Water Res., 50 (2014) 341–349.
  17. O. Habimana, A.J.C. Semião, E. Casey, The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes, J. Membr. Sci., 454 (2014) 82–96.
  18. W. Ying, V. Gitis, J. Lee, M. Herzberg, Effects of shear rate on biofouling of reverse osmosis membrane during tertiary wastewater desalination, J. Membr. Sci., 427 (2013) 390–398.
  19. M.T. Khan, M. Busch, V.G. Molina, A.H. Emwas, C. Aubry, J.P. Croue, How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?, Water Res., 59 (2014) 271–282.
  20. M. Ben-Sasson, X. Lu, E. Bar-Zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Giannelis, M. Elimelech, In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation, Water Res., 62 (2014) 260–270.
  21. J.B. Andersen, A. Heydorn, M. Hentzer, L. Eberl, O. Geisenberger, B.B. Christensen, S. Molin, M. Givskov, Gfpbased N-acyl homoserine-lactone sensor systems for detection of bacterial communication, Appl. Environ. Microbiol., 67 (2001) 575–585.
  22. M.S. Mauter, A. Fait, M. Elimelech, M. Herzberg, Surface cell density effects on Escherichia coli gene expression during cell attachment, Environ. Sci. Technol., 47 (2013) 6223–6230.
  23. H.C. Flemming, Biofouling in water systems--cases, causes and countermeasures, Appl. Microbiol. Biotechnol., 59 (2002) 629–640.
  24. S.S. Bucs, N. Farhat, J.C. Kruithof, C. Picioreanu, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Review on strategies for biofouling mitigation in spiral wound membrane systems, Desalination, 434 (2018) 189–197.
  25. H.-C. Flemming, A. Tamachkiarowa, J. Klahre, J. Schmitt, Monitoring of fouling and biofouling in technical systems, Water Sci. Technol., 38 (1998) 291–298.
  26. H.-C. Flemming, Role and levels of real-time monitoring for successful anti-fouling strategies - an overview, Water Sci. Technol., 47 (2003) 1–8.
  27. S.S. Bucs, N. Farhat, A. Siddiqui, R. Valladares Linares, A. Radu, J.C. Kruithof, J.S. Vrouwenvelder, Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies, Desal. Wat. Treat., 57 (2015) 12893–12901.
  28. S.S. Bucs, R. Valladares Linares, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems, Water Res., 67 (2014) 227–242.
  29. G. Massons-Gassol, G. Gilabert-Oriol, J. Johnson, T. Arrowood, Comparing biofouling development in membrane fouling simulators and spiral-wound reverse osmosis elements using river water and municipal wastewater, Ind. Eng. Chem. Res., 56 (2017) 11628–11633.
  30. H. Sanawar, A. Siddiqui, S.S. Bucs, N.M. Farhat, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Applicability of short-term accelerated biofouling studies to predict longterm biofouling accumulation in reverse osmosis membrane systems, Desal. Wat. Treat., 97 (2017) 72–78.
  31. N. Siebdrath, W. Ding, E. Pietsch, J. Kruithof, W. Uhl, J.S. Vrouwenvelder, Construction and validation of a longchannel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules, Desal. Wat. Treat., 89 (2017) 1–16.
  32. M. Staal, N. Farhat, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms, Desal. Wat. Treat., 80 (2017) 1–10.
  33. J.S. Vrouwenvelder, S.M. Bakker, M. Cauchard, R. Le Grand, M. Apacandié, M. Idrissi, S. Lagrave, L.P. Wessels, J.A.M. van Paassen, J.C. Kruithof, M.C.M. van Loosdrecht, The membrane fouling simulator: a suitable tool for prediction and characterisation of membrane fouling, Water Sci. Technol., 55 (2007) 197.
  34. J.S. Vrouwenvelder, J. Buiter, M. Riviere, W.G.J. van der Meer, M.C.M. van Loosdrecht, J.C. Kruithof, Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems, Water Res., 44 (2010) 689–702.
  35. J.S. Vrouwenvelder, C. Hinrichs, W.G.J. van der Meer, M.C.M. van Loosdrecht, J.C. Kruithof, Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction, Biofouling, 25 (2009) 543–555.
  36. J.S. Vrouwenvelder, J.A.M. van Paassen, J.M.C. van Agtmaal, M.C.M. van Loosdrecht, J.C. Kruithof, A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: fact or fiction?, J. Membr. Sci., 326 (2009) 36–44.
  37. P.A. Araújo, J.C. Kruithof, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, The potential of standard and modified feed spacers for biofouling control, J. Membr. Sci., 403–404 (2012) 58–70.
  38. P.A. Araújo, D.J. Miller, P.B. Correia, M.C.M. van Loosdrecht, J.C. Kruithof, B.D. Freeman, D.R. Paul, J.S. Vrouwenvelder, Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control, Desalination, 295 (2012) 1–10.
  39. S.S. Bucs, R.V. Linares, N. Farhat, A. Matin, Z. Khan, M.C.M. van Loosdrecht, R. Yang, M. Wang, K.K. Gleason, J.C. Kruithof, J.S. Vrouwenvelder, Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control, Desal. Wat. Treat., 68 (2017) 1–11.
  40. S.A. Creber, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, M.L. Johns, Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging, J. Membr. Sci., 362 (2010) 202–210.
  41. J. Duiven, B. Rietman, W. van de Ven, Application of the membrane fouling simulator to determine biofouling potential of antiscalants in membrane filtration, J. Water Supply Res. Technol., 59 (2010) 111–119.
  42. D.J. Miller, P.A. Araújo, P.B. Correia, M.M. Ramsey, J.C. Kruithof, M.C.M. van Loosdrecht, B.D. Freeman, D.R. Paul, M. Whiteley, J.S. Vrouwenvelder, Short-term adhesion and longterm biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control, Water Res., 46 (2012) 3737–3753.
  43. A. Siddiqui, N. Farhat, S.S. Bucs, R.V. Linares, C. Picioreanu, J.C. Kruithof, M.C.M. van Loosdrecht, J. Kidwell, J.S. Vrouwenvelder, Development and characterization of 3D-printed feed spacers for spiral wound membrane systems, Water Res., 91 (2016) 55–67.
  44. A. Siddiqui, S. Lehmann, S.S. Bucs, M. Fresquet, L. Fel, E.I.E.C. Prest, J. Ogier, C. Schellenberg, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators, Water Res., 110 (2017) 281–287.
  45. J.S. Vrouwenvelder, F. Beyer, K. Dahmani, N. Hasan, G. Galjaard, J.C. Kruithof, M.C.M. van Loosdrecht, Phosphate limitation to control biofouling, Water Res., 44 (2010) 3454–3466.
  46. J.S. Vrouwenvelder, D.A. Graf von der Schulenburg, J.C. Kruithof, M.L. Johns, M.C.M. van Loosdrecht, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem, Water Res., 43 (2009) 583–594.
  47. J.S. Vrouwenvelder, J.C. Kruithof, M.C.M. van Loosdrecht, Integrated approach for biofouling control, Water. Sci. Technol., 62 (2010) 2477–2490.
  48. J.S. Vrouwenvelder, C. Picioreanu, J.C. Kruithof, M.C.M. van Loosdrecht, Biofouling in spiral wound membrane systems: three-dimensional CFD model based evaluation of experimental data, J. Membr. Sci., 346 (2010) 71–85.
  49. J.S. Vrouwenvelder, M.C.M. van Loosdrecht, J.C. Kruithof, A novel scenario for biofouling control of spiral wound membrane systems, Water Res., 45 (2011) 3890–3898.
  50. N.M. Farhat, M. Staal, A. Siddiqui, S.M. Borisov, S.S. Bucs, J.S. Vrouwenvelder, Early non-destructive biofouling detection and spatial distribution: application of oxygen sensing optodes, Water Res., 83 (2015) 10–20.
  51. L. Fortunato, S.S. Bucs, R.V. Linares, C. Cali, J.S. Vrouwenvelder, T. Leiknes, Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel, J. Membr. Sci., 524 (2017) 673–681.
  52. L. Fortunato, T. Leiknes, In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping, Bioresour. Technol., 229 (2017) 231–235.
  53. D.A. Graf von der Schulenburg, J.S. Vrouwenvelder, S.A. Creber, M.C.M. van Loosdrecht, M.L. Johns, Nuclear magnetic resonance microscopy studies of membrane biofouling, J. Membr. Sci., 323 (2008) 37–44.
  54. J.S. Vrouwenvelder, M.C.M. van Loosdrecht, J.C. Kruithof, Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes, Desalination, 265 (2011) 206–212.
  55. J.S. Vrouwenvelder, J.A.M. van Paassen, J.C. Kruithof, M.C.M. van Loosdrecht, Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection, J. Membr. Sci., 338 (2009) 92–99.
  56. G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.
  57. S.S. Bucs, N. Farhat, A. Siddiqui, R.V. Linares, A. Radu, J.C. Kruithof, J.S. Vrouwenvelder, Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies, Desal. Wat. Treat., 57 (2016) 12893–12901.
  58. M. Kostoglou, A.J. Karabelas, Mathematical analysis of the meso-scale flow field in spiral-wound membrane modules, Ind. Eng. Chem. Res., 50 (2011) 4653–4666.
  59. L.P. Wessels, S.M. Bakker, J.S. Vrouwenvelder, J.A.M. Paassen, Membrane Fouling Monitor, Dutch patent NL 1028474, 11 September, The Netherlands, 2006.
  60. H. Sanawar, A. Siddiqui, Sz. S. Bucs, N.M. Farhat, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Applicability of short-term accelerated biofouling studies to predict longterm biofouling accumulation in reverse osmosis membrane systems, Desal. Wat. Treat., 97 (2017) 72–78.
  61. C. Dreszer, H.C. Flemming, A.D. Wexler, A. Zwijnenburg, J.C. Kruithof, J.S. Vrouwenvelder, Development and testing of a transparent membrane biofouling monitor, Desal. Wat. Treat., 52 (2014) 1807–1819.
  62. W.A.M. Hijnen, D. Biraud, E.R. Cornelissen, D. van Der Kooij, Threshold concentration of easily assimilable organic carbon in feedwater for biofouling of spiral-wound membranes, Environ. Sci. Technol., 43 (2009) 4890–4895.
  63. T. Griebe, H.-C. Flemming, Biocide-free antifouling strategy to protect RO membranes from biofouling, Desalination, 118 (1998) 153–159.
  64. P.A. Alphenaar, R. Sleyster, P. de Reuver, G.-J. Ligthart, G. Lettinga, Phosphorus requirement in high-rate anaerobic wastewater treatment, Water Res., 27 (1993) 749–756.
  65. P.J. Harrison, M.H. Hu, Y.P. Yang, X. Lu, Phosphate limitation in estuarine and coastal waters of China, J. Exp. Mar. Biol. Ecol., 140 (1990) 79–87.
  66. E. van Donk, L.R. Mur, J. Ringelberg, A study of phosphate limitation in Lake Maarsseveen: phosphate uptake kinetics versus bioassays, Hydrobiologia, 188 (1989) 201–209.
  67. T. Toolan, J.D. Wehr, S. Findlay, Inorganic phosphorus stimulation of bacterioplankton production in a mesoeutrophic lake, Appl. Environ. Microbiol., 57 (1991) 2074–2078.
  68. A. Pettersson, P. Blomqvist, Bioassay for phosphate demand in phytoplankton from acidified lakes: Lake Njupfatet, an example of phosphate deficiency induced by liming, Hydrobiologia, 246 (1992) 99–110.
  69. M.N. Mohamed, J.R. Lawrence, R.D. Robarts, Phosphorus limitation of heterotrophic biofilms from the Fraser River, British Columbia, and the effect of pulp mill effluent, Microb. Ecol., 36 (1998) 121–130.
  70. T. Zohary, B. Herut, M.D. Krom, R.F.C. Mantoura, P. Pitta, S. Psarra, F. Rassoulzadegan, N. Stambler, T. Tanaka, T.F. Thingstad, E.M.S. Woodward, P-limited bacteria but N and P co-limited phytoplankton in the Eastern Mediterranean—a microcosm experiment, Deep Sea Res. Part 2 Top. Stud. Oceanogr., 52 (2005) 3011–3023.
  71. I.T. Miettinen, T. Vartiainen, P.J. Martikainen, Phosphorus and bacterial growth in drinking water, Appl. Environ. Microbiol., 63 (1997) 3242–3245.
  72. E. Torvinen, M.J. Lehtola, P.J. Martikainen, I.T. Miettinen, Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature, Appl. Environ. Microbiol., 73 (2007) 6201–6207.
  73. S. Kasahara, K. Maeda, M. Ishikawa, Influence of phosphorus on biofilm accumulation in drinking water distribution systems, Water Sci. Technol. Water Supply, 4 (2005) 389–398.
  74. M.J. Lehtola, I.T. Miettinen, T. Vartiainen, P.J. Martikainen, Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes, Water Res., 36 (2002) 3681–3690.
  75. M.J. Lehtola, T. Juhna, I.T. Miettinen, T. Vartiainen, P.J. Martikainen, Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia, J. Ind. Microbiol. Biotechnol., 31 (2004) 489–494.
  76. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Engineering: Treatment and Reuse, 4th ed., McGraw-Hill, New York, 2003.
  77. W. Maher, L. Woo, Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus, Anal. Chim. Acta, 375 (1998) 5–47.
  78. J.S. Vrouwenvelder, S.A. Manolarakis, H.R. Veenendaal, D. van der Kooij, Biofouling potential of chemicals used for scale control in RO and NF membranes, Desalination, 132 (2000) 1–10.
  79. R.C.M. Jong, J. Duiven, G.G. Terhorst, K.J. Baas, Implementation research of new phosphorus free antiscalant at an aerobic ground water RO plant, Desal. Wat. Treat., 51 (2013) 5021–5025.
  80. R.P. Carnahan, L. Bolin, W. Suratt, Biofouling of PVD-1 reverse osmosis elements in the water treatment plant of the city of Dunedin, Florida, Desalination, 102 (1995) 235–244.
  81. J.S. Vrouwenvelder, J.A.M. van Paassen, H.C. Folmer, Jan A.M.H. Hofman, M.M. Nederlof, D. van der Kooij, Biofouling of membranes for drinking water production, Desalination, 118 (1998) 157–166.
  82. M. Uchymiak, A.R. Bartman, N. Daltrophe, M. Weissman, J. Gilron, P.D. Christofides, W.J. Kaiser, Y. Cohen, Brackish water reverse osmosis (BWRO) operation in feed flow reversal mode using an ex situ scale observation detector (EXSOD), J. Membr. Sci., 341 (2009) 60–66.
  83. E.R. Cornelissen, L. Rebour, D. van der Kooij, L.P. Wessels, Optimization of air/water cleaning (AWC) in spiral wound elements, Desalination, 236 (2009) 266–272.
  84. E.R. Cornelissen, J.S. Vrouwenvelder, S.G.J. Heijman, X.D. Viallefont, D. van der Kooij, L.P. Wessels, Periodic air/water cleaning for control of biofouling in spiral wound membrane elements, J. Membr. Sci., 287 (2007) 94–101.
  85. A.I. Radu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, C. Picioreanu, Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels, Chem. Eng. J., 188 (2012) 30–39.
  86. A.I. Radu, M.S.H. van Steen, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, C. Picioreanu, Spacer geometry and particle deposition in spiral wound membrane feed channels, Water Res., 64 (2014) 160–176.
  87. C. Picioreanu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices, J. Membr. Sci., 345 (2009) 340–354.
  88. S.A. Creber, T.R.R. Pintelon, D.A. Graf von der Schulenburg, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, M.L. Johns, Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes, Food Bioprod. Process, 88 (2010) 401–408.
  89. T.H. Chong, F.S. Wong, A.G. Fane, Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: experimental observations, J. Membr. Sci., 314 (2008) 101–111.
  90. T.H. Chong, F.S. Wong, A.G. Fane, The effect of imposed flux on biofouling in reverse osmosis: role of concentration polarisation and biofilm enhanced osmotic pressure phenomena, J. Membr. Sci., 325 (2008) 840–850.
  91. M. Herzberg, M. Elimelech, Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure, J. Membr. Sci., 295 (2007) 11–20.
  92. M. Herzberg, M. Elimelech, Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa, ISME J., 2 (2008) 180–194.
  93. A.I. Radu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, C. Picioreanu, Modeling the effect of biofilm formation on reverse osmosis performance: flux, feed channel pressure drop and solute passage, J. Membr. Sci., 365 (2010) 1–15.
  94. A.I. Radu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, C. Picioreanu, Biofouling in membrane devices treating water with different salinities: a modeling study, Desal. Wat. Treat., 34 (2011) 284–289.
  95. M. Amokrane, D. Sadaoui, C.P. Koutsou, A.J. Karabelas, M. Dudeck, A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination, J. Membr. Sci., 477 (2015) 139–150.
  96. R.V. Linares, L. Fortunato, N.M. Farhat, S.S. Bucs, M. Staal, E.O. Fridjonsson, M.L. Johns, J.S. Vrouwenvelder, T. Leiknes, Minireview: novel non-destructive in situ biofilm characterization techniques in membrane systems, Desal. Wat. Treat., 57 (2016) 22894–22901.
  97. S. West, M. Wagner, C. Engelke, H. Horn, Optical coherence tomography for the in situ three-dimensional visualization and quantification of feed spacer channel fouling in reverse osmosis membrane modules, J. Membr. Sci., 498 (2016) 345–352.
  98. N.M. Farhat, M. Staal, S.S. Bucs, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems, J. Membr. Sci., 520 (2016) 964–971.
  99. N.M. Farhat, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, S.S. Bucs, M. Staal, Effect of water temperature on biofouling development in reverse osmosis membrane systems, Water Res., 103 (2016) 149–159.
  100. E.I. Prest, M. Staal, M. Kühl, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems, J. Membr. Sci., 392 (2012) 66–75.
  101. M. Staal, E.I. Prest, J.S. Vrouwenvelder, L.F. Rickelt, M. Kühl, A simple optode based method for imaging O2 distribution and dynamics in tap water biofilms, Water Res., 45 (2011) 5027–5037.
  102. E.O. Fridjonsson, S.J. Vogt, J.S. Vrouwenvelder, M.L. Johns, Early non-destructive biofouling detection in spiral wound RO membranes using a mobile earth’s field NMR, J. Membr. Sci., 489 (2015) 227–236.
  103. E.O. Fridjonsson, S.A. Creber, J.S. Vrouwenvelder, M.L. Johns, Magnetic resonance signal moment determination using the earth’s magnetic field, J. Magn. Reson., 252 (2015) 145–150.
  104. C. Dreszer, A.D. Wexler, S. Drusova, T. Overdijk, A. Zwijnenburg, H.C. Flemming, J.C. Kruithof, J.S. Vrouwenvelder, In-situ biofilm characterization in membrane systems using optical coherence tomography: formation, structure, detachment and impact of flux change, Water Res., 67 (2014) 243–254.
  105. R.V. Linares, A.D. Wexler, S.S. Bucs, C. Dreszer, A. Zwijnenburg, H.C. Flemming, J.C. Kruithof, J.S. Vrouwenvelder, Compaction and relaxation of biofilms, Desal. Wat. Treat., 57 (2015) 12902–12914.
  106. S.S. Bucs, S.T.L. Hekkert, M.J. Staal, J.S. Vrouwenvelder, In-Line Quantification and Characterization of Membrane Fouling, U.S. Patent Application 20170363535, 21 December, USA, 2017.
  107. C. Dreszer, J.S. Vrouwenvelder, A.H. Paulitsch-Fuchs, A. Zwijnenburg, J.C. Kruithof, H.C. Flemming, Hydraulic resistance of biofilms, J. Membr. Sci., 429 (2013) 436–447.
  108. C. Dreszer, H.C. Flemming, A. Zwijnenburg, J.C. Kruithof, J.S. Vrouwenvelder, Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient, Water Res., 50 (2014) 200–211.
  109. S.S. Bucs, R.V. Linares, J.O. Marston, A.I. Radu, J.S. Vrouwenvelder, C. Picioreanu, Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes, Water Res., 87 (2015) 299–310.