References

  1. G.P. Broom, R.C. Squires, M.P.J. Simpson, I. Martin, The treatment of heavy metal effluents by crossflow microfiltration, J. Membr. Sci., 87 (1994) 219–230.
  2. M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of lead from lead battery recycling plant wastewater, Ind. Eng. Chem. Res., 41 (2002) 1579–1582.
  3. G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon, J. Environ. Manage., 102 (2012) 148–164.
  4. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  5. US EPA, National Primary Drinking Water Regulation, U.S. Environmental Protection Agency, 2009.
  6. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301.
  7. B.R. Stern, M. Solioz, D. Krewski, P. Aggett, T.C. Aw, S. Baker, K. Crump, M. Dourson, L. Haber, R. Hertzberg, C. Keen, B. Meek, L. Rudenko, R. Schoeny, W. Slob, T. Starr, Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships, J. Toxicol. Environ. Health Part B, 10 (2007) 157–222.
  8. N. Ünlü, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions, J. Hazard. Mater., 136 (2006) 272–280.
  9. P. Hadi, K.Y. Yeung, J. Barford, K.J. An, G. McKay, Significance of “effective” surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules, J. Environ. Chem. Eng., 3 (2015) 1029–1037.
  10. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  11. M. Valix, W.H. Cheung, G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56 (2004) 493–501.
  12. Y. Li, B. Zhao, L. Zhang, R. Han, Biosorption of copper ion by natural and modified wheat straw in fixed-bed column, Desal. Wat. Treat., 51 (2013) 5735–5745.
  13. L. Mouni, L. Belkhiri, F. Zouggaghe, M. Tafer, Removal of Pb(II) from aqueous solution by adsorption using activated carbon developed from apricot stone: equilibrium and kinetic, Desal. Wat. Treat., 52 (2014) 6412–6419.
  14. M. Nadeem, I.B. Tan, M.R.U. Haq, S.A. Shahid, S.S. Shah, G. McKay, Sorption of lead ions from aqueous solution by chickpea leaves, stems and fruit peelings, Adsorpt. Sci. Technol., 24 (2006) 269–282.
  15. G.E. Sharaf El-Deen, S.E.A. Sharaf El-Deen, Kinetic and isotherm studies for adsorption of Pb(II) from aqueous solution onto coconut shell activated carbon, Desal. Wat. Treat., 57 (2016) 28910–28931.
  16. J. Shou, M. Qiu, Adsorption of copper ions onto activated carbon from capsicum straw, Desal. Wat. Treat., 57 (2016) 353–359.
  17. L. Mouni, D. Merabet, A. Bouzaza, L. Belkhiri, Removal of Pb2+ and Zn2+ from the aqueous solutions by activated carbon prepared from Dates stone, Desal. Wat. Treat., 16 (2010) 66–73.
  18. M. Nadeem, A. Mahmood, S.A. Shahid, S.S. Shah, A.M. Khalid, G. McKay, Sorption of lead from aqueous solution by chemically modified carbon adsorbents, J. Hazard. Mater., 138 (2006) 604–613.
  19. E.L.K. Mui, W.H. Cheung, M. Valix, G. McKay, Dye adsorption onto char from bamboo, J. Hazard. Mater., 177 (2010) 1001–1005.
  20. Q.-S. Liu, Properties of chemically prepared corncob-based activated carbons and their adsorption characteristics for aqueous lead and phenol, Desal. Wat. Treat., 72 (2017) 197–206.
  21. K. Kipigroch, M. Janosz-Rajczyk, R. Mosakowska, Sorption of copper (II) and cadmium (II) ions with the use of algae, Desal. Wat. Treat., 52 (2014) 3987–3992.
  22. Y.S. Ho, G. McKay, Kinetic model for lead(II) sorption on to peat, Adsorpt. Sci. Technol., 16 (1998) 243–255.
  23. D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chem. Eng. Sci., 55 (2000) 5819–5829.
  24. J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies for the sorption of lead from effluents using chitosan, Chemosphere, 52 (2003) 1021–1030.
  25. C.W. Cheung, J.F. Porter, G. McKay, Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation, Langmuir, 18 (2002) 650–656.
  26. J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies of the sorption of Cu(II) ions onto chitosan, J. Colloid Interface Sci., 255 (2002) 64–74.
  27. A. Shahtalebi, M.H. Sarrafzadeh, G. McKay, An adsorption diffusion model for removal of copper (II) from aqueous solution by pyrolytic tyre char, Desal. Wat. Treat., 51 (2013) 5664–5673.
  28. J. Moreno-Pérez, A. Bonilla-Petriciolet, C.K. Rojas-Mayorga, D.I. Mendoza-Castillo, M. Mascia, M. Errico, Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling, Desal. Wat. Treat., 57 (2016) 24200–24209.
  29. L. Pivarčiová, O. Rosskopfová, M. Galamboš, P. Rajec, Adsorption behavior of Zn(II) ions on synthetic hydroxyapatite, Desal. Wat. Treat., 55 (2015) 1825–1831.
  30. V.-P. Dinh, N.-C. Le, V.-D. Nguyen, N.-T. Nguyen, Adsorption of zinc (II) onto MnO2/chitosan composite: equilibrium and kinetic studies, Desal. Wat. Treat., 58 (2017) 427–434.
  31. T.-H. Shek, A. Ma, V.K.C. Lee, G. McKay, Kinetics of zinc ions removal from effluents using ion exchange resin, Chem. Eng. J., 146 (2009) 63–70.
  32. P. Hadi, J. Barford, G. McKay, Toxic heavy metal capture using a novel electronic waste-based material—mechanism, modeling and comparison, Environ. Sci. Technol., 47 (2013) 8248–8255.
  33. P. Hadi, M. Xu, C.S.K. Lin, C.-W. Hui, G. McKay, Waste printed circuit board recycling techniques and product utilization, J. Hazard. Mater., 283 (2015) 234–243.
  34. M. Xu, P. Hadi, C. Ning, J. Barford, K.J. An, G. McKay, Aluminosilicate-based adsorbent in equimolar and nonequimolar binary-component heavy metal removal systems, Water Sci. Technol., 72 (2015) 2166–2178.
  35. S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci., 280 (2004) 322–333.
  36. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11 (1963) 431–441.
  37. J.F. Porter, G. McKay, K.H. Choy, The prediction of sorption from a binary mixture of acidic dyes using single- and mixedisotherm variants of the ideal adsorbed solute theory, Chem. Eng. Sci., 54 (1999) 5863–5885.
  38. G. McKay, A. Mesdaghinia, S. Nasseri, M. Hadi, M. Solaimany Aminabad, Optimum isotherms of dyes sorption by activated carbon: fractional theoretical capacity and error analysis, Chem. Eng. J., 251 (2014) 236–247.
  39. Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) 1–33.
  40. V.K. Gupta, Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent, Ind. Eng. Chem. Res., 37 (1998) 192–202.
  41. A. López-Delgado, C. Pérez, F.A. López, Sorption of heavy metals on blast furnace sludge, Water Res., 32 (1998) 989–996.
  42. K.K. Panday, G. Prasad, V.N. Singh, Copper (II) removal from aqueous solutions by fly ash, Water Res., 19 (1985) 869–873.
  43. E. López, B. Soto, M. Arias, A. Núñez, D. Rubinos, M.T. Barral, Adsorbent properties of red mud and its use for wastewater treatment, Water Res., 32 (1998) 1314–1322.
  44. S. Peng, H. Meng, Y. Ouyang, J. Chang, Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption, Ind. Eng. Chem. Res., 53 (2014) 2106–2113.
  45. M.A. Hossain, H.H. Ngo, W.S. Guo, T. Setiadi, Adsorption and desorption of copper(II) ions onto garden grass, Bioresour. Technol., 121 (2012) 386–395.
  46. J.K. McLellan, C.A. Rock, Pretreating landfill leachate with peat to remove metals, Water Air Soil Pollut., 37 (1988) 203–215.
  47. H.I. Owamah, Biosorptive removal of Pb(II) and Cu(II) from wastewater using activated carbon from cassava peels, J. Mater. Cycles Waste Manage., 16 (2014) 347–358.
  48. N. Feng, X. Guo, S. Liang, Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mater., 164 (2009) 1286–1292.
  49. E. Pehlivan, T. Altun, Ş. Parlayici, Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution, Food Chem., 135 (2012) 2229–2234.
  50. P. Tasaso, Adsorption of copper using pomelo peel and depectinated pomelo peel, J. Clean Energy Technol., 2 (2014) 154–157.
  51. Z. Cao, Y. He, L. Sun, X. Cao, Removal of heavy metal ions from aqueous solutions by adsorption using modified orange peel as adsorbent, Adv. Mater. Res., 236–238 (2011) 237–240.
  52. M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent, Sep. Sci. Technol., 44 (2009) 3770–3791.
  53. S. Liang, X. Guo, N. Feng, Q. Tian, Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents, J. Hazard. Mater., 174 (2010) 756–762.
  54. A. Witek-Krowiak, Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process, Chem. Eng. J., 192 (2012) 13–20.
  55. S. Rio, C. Faur-Brasquet, L.L. Coq, P. Courcoux, P.L. Cloirec, Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation––application to air and water treatments, Chemosphere, 58 (2005) 423–437.
  56. W. Qiu, Y. Zheng, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145 (2009) 483–488.
  57. L.H. Velazquez-Jimenez, A. Pavlick, J.R. Rangel-Mendez, Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water, Ind. Crops Prod., 43 (2013) 200–206.
  58. S. Liang, X. Guo, Q. Tian, Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel, Desalination, 275 (2011) 212–216.
  59. S. Liang, X.-y. Guo, N.-c. Feng, Q.-h. Tian, Effective removal of heavy metals from aqueous solutions by orange peel xanthate, Trans. Nonferrous Met. Soc. China, 20 (2010) s187–s191.
  60. W. Liu, Y. Liu, Y. Tao, Y. Yu, H. Jiang, H. Lian, Comparative study of adsorption of Pb(II) on native garlic peel and mercerized garlic peel, Environ. Sci. Pollut. Res., 21 (2014) 2054–2063.
  61. M. Basu, A.K. Guha, L. Ray, Biosorptive removal of lead by lentil husk, J. Environ. Chem. Eng., 3 (2015) 1088–1095.
  62. F.A. Pavan, A.C. Mazzocato, R.A. Jacques, S.L.P. Dias, Ponkan peel: a potential biosorbent for removal of Pb(II) ions from aqueous solution, Biochem. Eng. J., 40 (2008) 357–362.
  63. B.L. Martins, C.C.V. Cruz, A.S. Luna, C.A. Henriques, Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass, Biochem. Eng. J., 27 (2006) 310–314.
  64. S. Ahmady‐Asbchin, Y. Andres, C. Gerente, P.L. Cloirec, Natural seaweed waste as sorbent for heavy metal removal from solution, Environ. Technol., 30 (2009) 755–762.
  65. K. Huang, H. Zhu, Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel, Environ. Sci. Pollut. Res., 20 (2013) 4424–4434.
  66. S.K. Srivastava, A.K. Singh, A. Sharma, Studies on the uptake of lead and zinc by lignin obtained from black liquor – a paper industry waste material, Environ. Technol., 15 (1994) 353–361.
  67. V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste, Water Res., 35 (2001) 1125–1134.
  68. J. Perić, M. Trgo, N. Vukojević Medvidović, Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms, Water Res., 38 (2004) 1893–1899.
  69. S. Afroze, T.K. Sen, H.M. Ang, Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: kinetics, mechanism and equilibrium study, Process Saf. Environ. Prot., 102 (2016) 336–352.
  70. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  71. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  72. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495.
  73. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024.
  74. M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS, 12 (1940) 217–222.
  75. J. Toth, State equations of the solid gas interface layer, Acta Chim. Acad. Sci. Hung., 69 (1971) 311–317.
  76. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60 (1960) 235–241.