References
- Y. Yang, N. Lior, Performance analysis of combined humidified
gas turbine power generation and multi-effect thermal vapor
compression desalination systems. Part 1. The desalination unit
and its combination with a steam-injected gas turbine power
system, Desalination, 196 (2006) 84–104.
- J.H. Reif, W. Alhalabi, Solar-thermal powered desalination: its
significant challenges and potential. Renew. Sustain. Energy
Rev., 48 (2015) 152–165.
- M. Agustín. T. Delgado, G.R. Lourdes, Preliminary design
of seawater and brackish water reverse osmosis desalination
systems driven by low-temperature solar organic Rankine
cycles (SORC). Energy Convers. Manage., 51 (2010) 2913–2920.
- M. Agustín. T. Delgado, G.R. Lourdes, Analysis and
optimization of the low-temperature solar organic Rankine
cycle (ORC), Energy Convers. Manage., 51 (2010) 2846–2856.
- J. Wang, Zh. Yan, P. Zhao, Y. Dai, Off-design performance
analysis of a solar-powered organic Rankine cycle, Energy
Convers. Manage., 80 (2014) 150–157.
- L. Qoaider, A. Liqreina, Optimization of dry cooled parabolic
trough (CSP) plants for the desert regions of the Middle East
and North Africa (MENA), Solar Energy, 122 (2015) 976–985.
- C. Parrado, A. Girard, F. Simon, E. Fuentealba, 2050 LCOE
(Levelized Cost of Energy) projection for a hybrid PV
(photovoltaic)-CSP (concentrated solar power) plant in the
Atacama Desert, Chile, Energy, 94 (2016) 422–430.
- E.R. Shouman, N.M. Khattab, Future economic of concentrating
solar power (CSP) for electricity generation in Egypt, Renew.
Sustain. Energy Rev., 41 (2015) 1119–1127.
- D. Cocco, G. Cau, Energy and economic analysis of concentrating
solar power plants based on parabolic trough and linear Fresnel
collectors, J. Power Energy, 229 (2015) 677–688.
- M. Balghouthi, S. Trabelsi, M. BenAmara, A. BelHadjAli,
A. Guizani, Potential of concentrating solar power (CSP)
technology in Tunisia and the possibility of interconnection
with Europe, Renew. Sustain. Energy Rev., 46 (2016) 1227–1248.
- B.J. Alqahtani, D.P. Echeverri, Integrated solar combined cycle
power plants: paving the way for thermal solar, Appl. Energy,
169 (2016) 927–936.
- Y. Li, Y. Yang, Thermodynamic analysis of a novel integrated
solar combined cycle, Appl. Energy, 122 (2014) 133–142.
- G. Franchini, A. Perdichizzi, S. Ravelli, G. Barigozzi, A
comparative study between parabolic trough and solar tower
technologies in solar Rankine cycle and integrated solar
combined cycle plants, Solar Energy, 98 (2013) 302–314.
- G. Manente, High performance integrated solar combined
cycles with minimum modifications to the combined cycle
power plant design, Energy Convers. Manage., 111 (2016)
186–197.
- G.C. Bakos, D. Parsa, Technoeconomic assessment of an
integrated solar combined cycle power plant in Greece using
line-focus parabolic trough collectors, Renew. Energy, 60 (2013)
598–603.
- E.M.A. Mokheimer, Y.N. Dabwan, M.A. Habib, S.A.M. Said,
F.A. Al-Sulaiman, Development and assessment of integrating
parabolic trough collectors with steam generation side of gas
turbine cogeneration systems in Saudi Arabia, Appl. Energy,
141 (2015) 131–142.
- E.M.A. Mokheimer, Y.N. Dabwan, M.A. Habib, Optimal
integration of solar energy with fossil fuel gas turbine
cogeneration plants using three different CSP technologies in
Saudi Arabia, Appl. Energy, 185 (2017) 1268–1280.
- A. Rovira, R. Barbero, M.J. Montes, R. Abbas, F. Varela, Analysis
and comparison of integrated solar combined cycles using
parabolic troughs and linear Fresnel reflectors as concentrating
systems, Appl. Energy, 162 (2016) 990–1000.
- Fichtner (Fichtner GmbH & Co. KG) and DLR (Deutsches
Zentrum für Luft und Raumfahrt e.V.), MENA Regional Water
Outlook, Part II, Desalination Using Renewable Energy, Task
1–Desalination Potential; Task 2–Energy Requirements; Task
3–Concentrate Management. 2011. Available at: http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/MENA_REGIONAL_WATER_OUTLOOK.pdf.
- B. Ortega-Delgado, L. García-Rodríguez, D.C. Alarcón-Padilla, Thermo economic comparison of integrating seawater
desalination processes in a concentrating solar power plant of 5
MWe, Desalination, 392 (2016) 102–117.
- G. Fiorenza, V.K. Sharma, G. Braccio, Techno-economic
evaluation of a solar powered water desalination plant, Energy
Convers. Manage., 44 (2003) 2217–2240.
- P. Palenzuela, G. Zaragoza, D. Alarcón-Padilla, E. Guillén, M.
Ibarra, J. Blanco, Assessment of different configurations for
combined parabolic-trough (PT) solar power and desalination
plants in arid regions, Energy, 36 (2011) 4950–4958.
- K.H.M. Bataineh, Multi-effect desalination plant combined
with thermal compressor driven by steam generated by solar
energy, Desalination, 385 (2016) 39–52.
- M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Thermo-economic
analysis of solar thermal power cycles assisted MED-VC (multi
effect distillation-vapor compression) desalination processes,
Energy, 36 (2011) 2753–2764.
- B. Ortega-Delgado, P. Palenzuela, D.C. Alarcón-Padilla,
Parametric study of a multi-effect distillation plant with
thermal vapor compression for its integration into a Rankine
cycle power block, Desalination, 394 (2016) 18–29.
- M. Moser, F. Trieb, T. Fichter, J. Kern, D. Hess, A flexible technoeconomic
model for the assessment of desalination plants
driven by renewable energies, Desal. Wat. Treat., 55 (2014)
3091–3105.
- A. Kouta, F. Al-Sulaima, M. Atif, S.B. Marshad, Entropy, exergy,
and cost analyses of solar driven cogeneration systems using
supercritical CO2 Brayton cycles and MEE-TVC desalination
system, Energy Convers. Manage., 115 (2016) 253–264.
- G. Iaquaniello, A. Salladini, A. Mari, A.A. Mabrouk, H.E.S. Fath,
Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination, Desalination, 336 (2014) 121–128.
- F. Calise, M.D. Accadia, A. Macaluso, A. Piacentino, L. Vanoli,
Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and
water, Energy Convers. Manage., 115 (2016) 200–220.
- M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Exergy and
thermo-economic analyses of a combined solar organic cycle
with multi effect distillation (MED) desalination process,
Desalination, 272 (2011) 135–147.
- I. Baniasad Askari, M. Ameri, Techno economic feasibility
analysis of Linear Fresnel solar field as thermal source of the
MED/TVC desalination system, Desalination, 394 (2016) 1–17.
- R. Abbas, M.J. Montes, M. Piera, J.M. Martínez-Val, Solar
radiation concentration features in linear Fresnel reflector
arrays, Energy Convers. Manage., 54 (2012) 133–144.
- R. Abbas, M.J. Montes, M. Piera, J.M. Martínez-Val, High
concentration linear Fresnel reflectors, Energy Convers.
Manage., 72 (2013) 60–68.
- R. Gabbrielli, P. Castrataro, F. del Medico, M. di Palo, B. Lenzo,
Levelized cost of heat for linear Fresnel concentrated solar
systems, Energy Procedia, 49 (2014) 1340–1349.
- Y. Qiu, Y.L. He, Z.D. Cheng, K. Wang, Study on optical and
thermal performance of a linear Fresnel solar reflector using
molten salt as HTF with MCRT and FVM methods, Appl.
Energy, 146 (2015) 162–173.
- http://www.irimo.ir/eng/wd/704-Stations-Network-and-Technical-Deputy.html.
- https://sam.nrel.gov/weather.
- http://www.dlr.de/tt/desktopdefault.aspx/tabid-2885/4422_read-16596.
- A. Giostri, M. Binotti, P. Silva, E. Macchi, G. Manzolini,
Comparison of two linear collectors in solar thermal plants:
parabolic trough versus Fresnel, J. Solar Energy Eng., 135 (2011)
621–630.
- B. Kelly, D. Kearney, Parabolic Trough Solar System Piping
Model Final Report, National Renewable Energy Laboratory
Subcontract Report NREL/SR-550-40165, 2006. Available at:
http://www.nrel.gov/csp/troughnet/pdfs/40165.pdf.
- System Adviser Model (SAM), Version 2015.6.30. Available
at: https://www.nrel.gov/analysis/sam/help/html-php/index.html?linear_fresnel_system_costs.htm.
- S. Loutatidou, H.A. Arafat, Techno-economic analysis of MED
and RO desalination powered by low-enthalpy geothermal
energy, Desalination, 365 (2015) 277–292.
- F. Verdier, R. Baten, Fichtner GmbH & Co.·KG, Bridging the
Water Demand Gap: Desalination Consultative Workshop on
Desalination and Renewable Energy, Muscat, Oman, 22–23
February, 2011.