References
- FAO/ECE, Legislation and Measures for the Solving of
Environmental Problems Resulting from Agricultural Practices
(With Particular Reference to Soil, Air and Water), Their
Economic Consequences and Impact on Agrarian Structures and
Farm Rationalization. United Nations Economic Commission
for Europe (UNECE) and FAO, Agri/Agrarian Structures and
Farm Rationalization, report No. 7, 1991.
- World Health Organization, Guidelines for Drinking-Water
Quality, vol. 1, Recommendations, 2nd ed., WHO, Geneva, 1993.
- RIVM, The Environment in Europe: A Global Perspective,
National Institute of Public Health and Environmental Protection
(RIVM), Netherlands, 1992.
- S. Reichenberger, M. Bach, A. Skitschak, H.G. Frede, Mitigation
strategies to reduce pesticide inputs into ground- and surface
water and their effectiveness: a review, Sci. Total Environ., 384
(2007) 1–35.
- I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation
of pesticides in aqueous titanium dioxide suspensions using
artificial and solar light: intermediates and degradation
pathways, Appl. Catal., B, 42 (2003) 319–335.
- N. Vela, M. Calín, M.J. Yáñez-Gascón, I. Garrido, G. Pérez-Lucas,
J. Fenoll, S. Navarro, Photocatalytic oxidation of six pesticides
listed as endocrine disruptor chemicals from wastewater using
two different TiO2 samples at pilot plant scale under sunlight
irradiation, J. Photochem. Photobiol., A, 353 (2018) 271–278.
- S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco,
W. Gernjak, Decontamination and disinfection of water by solar
photocatalysis: recent overview and trends, Catal. Today, 147
(2009) 1–59.
- S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of
parameters on the heterogeneous photocatalytic degradation
of pesticides and phenolic contaminants in wastewater: a short
review, J. Environ. Manage., 92 (2011) 311–330.
- I. Fechete, Y. Wang, C. Védrine, The past, present and future of
heterogeneous catalysis, Catal. Today, 189 (2012) 2–27.
- R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New
perspectives for advanced oxidation processes, J. Environ
Manage., 195 (2017) 93–99.
- M.M. Mahlambi, C.J. Ngila, B.B. Mamba, Recent developments
in environmental photocatalytic degradation of organic
pollutants: the case of titanium dioxide nanoparticles – a
review, J. Nanomat., 2015 (2015) 1–29.
- A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, Catalysts, 3 (2013) 189–218.
- R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai,
A review of solar and visible light active TiO2 photocatalysis for
treating bacteria, cyanotoxins and contaminants of emerging
concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
- Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (•OH)
generation processes in photocatalysis, ACS Energy Lett., 1
(2016) 356–359.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous
solution, J. Phys. Chem., 17 (1988) 513–886.
- G.P. Anipsitakis, D.D. Dionysiou, Radical Generation by the
interaction of transition metals with common oxidants, Environ.
Sci. Technol., 38 (2004) 3705–3712.
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of
inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data,
17 (1988) 1027–1284.
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69–96.
- M.I. Litter, Heterogeneous photocatalysis: transition metal ions
in photocatalytic systems, Appl. Catal., B, 23 (1999) 89–114.
- N. Stamatis, M. Antonopoulou, I. Konstantinou, Photocatalytic
degradation kinetics and mechanisms of fungicide tebuconazole
in aqueous TiO2 suspensions, Catal. Today, 252 (2015) 93–99.
- P. Calza, S. Baudino, R. Aigotti, C. Baiocchi, P. Branca,
E. Pelizzetti, High-performance liquid chromatographic/tandem
mass spectrometric identification of the phototransformation
products of tebuconazole on titanium dioxide, J. Mass
Spectrom., 37 (2002) 566–576.
- T. De Hermann Prestes, D. De Oliveira Gibbon, M.A. Lansarin,
C.C. Moro, Tebuconazole photocatalytic degradation kinetics,
Quim. Nova, 33 (2010) 798–801.
- D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos,
K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin, T. Sato,
H. Katsuki, Three-phase nanocomposites of two nanoclays and
TiO2: Synthesis, characterization and photacatalytic activities,
Appl. Catal., B, 147 (2014) 526–533.
- D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos,
D. Toli, K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin,
T. Sato, H. Katsuki, Halloysite–TiO2 nanocomposites: synthesis,
characterization and photocatalytic activity, Appl. Catal., B,
132–133 (2013) 416–422.
- D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou,
H. Li, S. Yin, T. Sato, H. Katsuki, Palygorskite–TiO2 nanocomposites:
Part 1. Synthesis and characterization, Appl. Clay
Sci., 83–84 (2013) 191–197.
- D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou,
K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin,
T. Sato, Palygorskite–TiO2 nanocomposites: Part 2. Photocatalytic
activities in decomposing air and organic pollutants, Appl. Clay
Sci., 83–84 (2013) 198–202.
- G. Shankaraiah, S. Poodari, D. Bhagawan, Vurimindi Himabindu,
S. Vidyavathi, Degradation of antibiotic norfloxacin in
aqueous solution using advanced oxidation processes (AOPs) –
a comparative study, Desal. Wat. Treat., 57 (2016) 27804–27815.
- L. Sun, C. Sun, X. Sun, Solar photocatalytic decolorization of azo
dyes in water and textile wastewater on N-(Cr3+, Fe3+) doped-TiO2 nanoparticle films: optimization of some operational
parameters, Desal. Wat. Treat., 56 (2015) 346–355.
- A.D. Eaton, Standard Methods for the Examination of Water
and Wastewater, 21st American Public Health Association,
American Water Works Association, Water Environment
Federation, APHA-AWWA-WEF, Washington, DC, 2005.
- V. Bekiari, P. Avramidis, Data quality in water analysis: validation
of combustion-infrared and combustion-chemiluminescence
methods for the simultaneous determination of Total Organic
Carbon (TOC) and Total Nitrogen (TN), Int. J. Environ. Anal.
Chem., 94 (2014) 65–76.