References

  1. Intergovernmental Panel on Climate Change, Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2014.
  2. M.J. Kampschreur, H. Temmink, R. Kleerebezem, M.S.M. Jetten, M.C.M. van Loosdrecht, Nitrous oxide emission during wastewater treatment, Water Res., 43 (2009) 4093–4103.
  3. Y. Law, L. Ye, Y. Pan, Z. Yuan, Nitrous oxide emissions from wastewater treatment processes, Philos. Trans. R. Soc. London Ser. B, 367 (2012) 1265–1277.
  4. S.W.H. Van Hulle, H.J.P. Vandeweyer, B.D. Meesschaert, P.A. Vanrolleghem, P. Dejans, A. Dumoulin, Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams, Chem. Eng. J., 162 (2010) 1–20.
  5. S. Milia, A. Carucci, G. Cappai, G. De Gioannis, A. Muntoni, M. Perra, M. Piredda, Sharon-Anammox Process for Treatment of Ammonium Rich Wastewater and Aerobic Granular Sludge Technology for Treatment of Wastewater and Groundwater Contaminated by Chlorinated Organic Pollutants. A Stateof- the-Art on Recent and Past Research Activities carried out at DICAAR, K. Kuchta, M. Ritzkowsky, J. Heerenklage, Eds., 1st Ger. Waste Dialog - Hamburg, Berichte, Verlag Abfall aktuell, Stuttgart, 2013, pp. 179–195.
  6. S. Milia, M. Perra, G. Cappai, A. Carucci, SHARON process as preliminary treatment of refinery wastewater with high organic carbon-to-nitrogen ratio, Desal. Wat. Treat., 57 (2016) 17935–17943.
  7. S. Milia, M. Perra, G. Tocco, A. Carucci, The start-up of an anammox reactor as the second step for the treatment of ammonium rich refinery (IGCC) wastewater with high Corg/N ratio, Ecol. Eng., 106 (2017) 358–368.
  8. C.T. Kinh, J. Ahn, T. Suenaga, N. Sittivorakulpong, P. Noophan, T. Hori, S. Riya, M. Hosomi, A. Terada, Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor, Appl. Microbiol. Biotechnol., 101 (2016) 1673–1683.
  9. S. Milia, G. Tocco, G. Erby, G. De Gioannis, A. Carucci, Preliminary Evaluation of Sharon-Anammox Process Feasibility to Treat Ammonium-Rich Effluents Produced by Double-Stage Anaerobic Digestion of Food Waste, G. Mannina, Ed., Front. Wastewater Treat. Model. FICWTM 2017, Springer International Publishing, Cham, 2017, pp. 536–543.
  10. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, 2005.
  11. A.C. Anthonisen, R.C. Loehr, T.B.S. Prakasam, E.G. Srinath, Inhibition of nitrification by ammonia and nitrous acid, J. Water Pollut. Control Fed., 48 (1976) 835–852.
  12. Y. Lv, K. Ju, T. Sun, L. Wang, R. Miao, T. Liu, X. Wang, Effect of the dissolved oxygen concentration on the N2O emission from an autotrophic partial nitritation reactor treating highammonium wastewater, Int. Biodeterior. Biodegrad., 114 (2016) 209–215.
  13. S.W.H. Van Hulle, S. Van Den Broeck, J. Maertens, K. Villez, B.M.R. Donckels, G. Schelstraete, E.I.P. Volcke, P.A. Vanrolleghem, Construction, start-up and operation of a continuously aerated laboratory-scale SHARON reactor in view of coupling with an Anammox reactor, Water SA., 31 (2005) 327–334.
  14. S.W.H. Van Hulle, E.I. Volcke, J.L. Teruel, B. Donckels, M.C. van Loosdrecht, P.A. Vanrolleghem, Influence of temperature and pH on the kinetics of the Sharon nitritation process, J. Chem. Technol. Biotechnol., 82 (2007) 471–480.
  15. A. Guisasola, S. Petzet, J.A. Baeza, J. Carrera, J. Lafuente, Inorganic carbon limitations on nitrification: experimental assessment and modelling, Water Res., 41 (2007) 277–286.
  16. A. Guisasola, I. Jubany, J.A. Baeza, J. Carrera, J. Lafuente, Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation, J. Chem. Technol. Biotechnol., 80 (2005) 388–396.
  17. K. Ju, L. Wang, Y. Lv, X. Zhang, R. Miao, X. Wang, Nitrous oxide emission in autotrophic partial nitritation system: macro- and microanalyses, J. Biosci. Bioeng., 120 (2015) 419–425.
  18. M.J. Kampschreur, W.R.L. van der Star, H.A. Wielders, J.W. Mulder, M.S.M. Jetten, M.C.M. van Loosdrecht, Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment, Water Res., 42 (2008) 812–826.
  19. M. Ali, R.M.L.D. Rathnayake, L. Zhang, S. Ishii, T. Kindaichi, H. Satoh, S. Toyoda, N. Yoshida, S. Okabe, Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor, Water Res., 102 (2016) 147–157.
  20. M.S. de Graaff, G. Zeeman, H. Temmink, M.C.M. van Loosdrecht, C.J.N. Buisman, Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide, Water Res., 44 (2010) 2171–2178.
  21. Y. Law, P. Lant, Z. Yuan, The effect of pH on N2O production under aerobic conditions in a partial nitritation system, Water Res., 45 (2011) 5934–5944.
  22. R.M.L.D. Rathnayake, Y. Song, A. Tumendelger, M. Oshiki, S. Ishii, H. Satoh, S. Toyoda, N. Yoshida, S. Okabe, Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor, Water Res., 47 (2013) 7078–7086.
  23. M. Pijuan, J. Torà, A. Rodríguez-Caballero, E. César, J. Carrera, J. Pérez, Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater, Water Res., 49 (2014) 23–33.
  24. Y. Law, B.J. Ni, P. Lant, Z. Yuan, N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate, Water Res., 46 (2012) 3409–3419.