References
- E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation
as an advanced oxidation technique, J. Hazard. Mater., 98 (2003)
33–50.
- N. Villota, L.M. Camarero, J.M. Lomas, J. Pérez-Arce, The role
of iron species on the turbidity of oxidized phenol solutions in a
photo-Fenton system, Environ. Technol., 5 (2015) 1–9.
- A. Machulek, J.E.F. Moraes, L.T. Okano, C.A. Silverio, F.H.
Quina, Photolysis of ferric ions in the presence of sulfate or
chloride ions: implications for the photo-Fenton process,
Photochem. Photobiol. Sci., 8 (2009) 985–991.
- J.A. Zazo, J.A. Casas, A.F. Mohedano, M.A. Gilarranz, J.J.
Rodríguez, Chemical pathway and kinetics of phenol oxidation
by Fenton’s reagent, Environ. Sci. Technol., 39 (2005) 9295–9302.
- A. Santos, P. Yustos, A. Quintanilla, S. Rodríguez, F. García-Ochoa, Route of the catalytic oxidation of phenol in aqueous
phase, Appl. Catal., B, 39 (2002) 97–113.
- M.E. Lindsey, G. Xu, J. Lu, M.A. Tarr, Enhanced Fenton
degradation of hydrophobic organics by simultaneous iron and
pollutant complexation with cyclodextrins, Sci. Total Environ.,
307 (2003) 215–229.
- M.J. Hynes, M. O’Coinceanainn, The kinetics and mechanisms
of the reaction of iron(III) with gallic acid, gallic acid methyl
ester and catechin, J. Inorg. Biochem., 85 (2001) 131–142.
- F. Mijangos, F. Varona, N. Villota, Changes in solution color
during phenol oxidation by Fenton reagent, Environ. Sci.
Technol., 40 (2006) 5538–5543.
- R. Yamahara, S. Ogo, H. Masuda, Y. Watanabe, (Catecholato)
iron(III) complexes: structural and functional models for the
catechol-bound iron(III) form of catechol dioxygenases, J. Inorg.
Biochem., 88 (2002) 284–294.
- A.M. De Luis, J.I. Lombraña, A. Menéndez, J. Sanz, Analysis of
the toxicity of phenol solutions treated with H2O2/UV and H2O2/Fe oxidative systems, Ind. Eng. Chem. Res., 50 (2001) 1928–1937.
- J.A. Zazo, J.A. Casas, C.B. Molina, A. Quintanilla, J.J. Rodriguez,
Evolution of ecotoxicity upon Fenton’s oxidation of phenol in
water, Environ. Sci. Technol., 41 (2007) 7164–7170.
- M. Ghioureliotis, J.A. Nicell, Toxicity of soluble products
from the peroxidase-catalysed polymerization of substituted
phenolic compounds, J. Chem. Technol. Biotechnol., 75 (2000)
98–106.
- J. Habicht, U. Mäeorg, Coupling of resorcinols in retorted
kukersite semi-coke, Environ. Chem., 63 (2014) 75–85.
- S.W. Lam, K. Chiang, T.M. Lim, R. Amal, G.K.-C. Low, Effect
of charge trapping species of cupric ions on the photocatalytic
oxidation of resorcinol, Appl. Catal., B, 55 (2005) 13–132.
- Y. Song, J. Xie, H. Shu, G. Zhao, X. Lva, H. Caic, Densityfunctional
theory and ab initio Hartree–Fork studies on the
structural parameters and chemical activity of the free radicals
generated by benzoquinone and hydroquinone, Bioorg. Med.
Chem., 13 (2005) 5658–5667.
- E.M. Rodríguez, B. Núñez, G. Fernández, F.J. Beltrán, Effects
of some carboxylic acids on the Fe(III)/UVA photocatalytic
oxidation of muconic acid in water, Appl. Catal., B, 89 (2009)
214–222.
- E. Rodríguez, M. Mimbrero, F.J. Masa, F.J. Beltrán,
Homogeneous iron-catalyzed photochemical degradation of
muconic acid in water, Water Res., 41 (2007) 1325–1333.
- E. Rodriguez, A. Encinas, F.J. Masa, F.J. Beltran, Influence
of resorcinol chemical oxidation on the removal of resulting
organic carbon by activated carbon adsorption, Chemosphere,
70 (2008) 1366–1374.
- N. Villota, L.M. Camarero, J.M. Lomas, J. Pérez-Arce, Changes
of turbidity during the phenol oxidation by photo-Fenton
treatment, Environ. Sci. Pollut. Res., 21 (2014) 12208–12216.
- K. Biradha, R. Santra, Crystal engineering of topochemical solid
state reactions, Chem. Soc. Rev., 42 (2013) 950–967.