References

  1. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  2. N. Villota, L.M. Camarero, J.M. Lomas, J. Pérez-Arce, The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system, Environ. Technol., 5 (2015) 1–9.
  3. A. Machulek, J.E.F. Moraes, L.T. Okano, C.A. Silverio, F.H. Quina, Photolysis of ferric ions in the presence of sulfate or chloride ions: implications for the photo-Fenton process, Photochem. Photobiol. Sci., 8 (2009) 985–991.
  4. J.A. Zazo, J.A. Casas, A.F. Mohedano, M.A. Gilarranz, J.J. Rodríguez, Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent, Environ. Sci. Technol., 39 (2005) 9295–9302.
  5. A. Santos, P. Yustos, A. Quintanilla, S. Rodríguez, F. García-Ochoa, Route of the catalytic oxidation of phenol in aqueous phase, Appl. Catal., B, 39 (2002) 97–113.
  6. M.E. Lindsey, G. Xu, J. Lu, M.A. Tarr, Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins, Sci. Total Environ., 307 (2003) 215–229.
  7. M.J. Hynes, M. O’Coinceanainn, The kinetics and mechanisms of the reaction of iron(III) with gallic acid, gallic acid methyl ester and catechin, J. Inorg. Biochem., 85 (2001) 131–142.
  8. F. Mijangos, F. Varona, N. Villota, Changes in solution color during phenol oxidation by Fenton reagent, Environ. Sci. Technol., 40 (2006) 5538–5543.
  9. R. Yamahara, S. Ogo, H. Masuda, Y. Watanabe, (Catecholato) iron(III) complexes: structural and functional models for the catechol-bound iron(III) form of catechol dioxygenases, J. Inorg. Biochem., 88 (2002) 284–294.
  10. A.M. De Luis, J.I. Lombraña, A. Menéndez, J. Sanz, Analysis of the toxicity of phenol solutions treated with H2O2/UV and H2O2/Fe oxidative systems, Ind. Eng. Chem. Res., 50 (2001) 1928–1937.
  11. J.A. Zazo, J.A. Casas, C.B. Molina, A. Quintanilla, J.J. Rodriguez, Evolution of ecotoxicity upon Fenton’s oxidation of phenol in water, Environ. Sci. Technol., 41 (2007) 7164–7170.
  12. M. Ghioureliotis, J.A. Nicell, Toxicity of soluble products from the peroxidase-catalysed polymerization of substituted phenolic compounds, J. Chem. Technol. Biotechnol., 75 (2000) 98–106.
  13. J. Habicht, U. Mäeorg, Coupling of resorcinols in retorted kukersite semi-coke, Environ. Chem., 63 (2014) 75–85.
  14. S.W. Lam, K. Chiang, T.M. Lim, R. Amal, G.K.-C. Low, Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol, Appl. Catal., B, 55 (2005) 13–132.
  15. Y. Song, J. Xie, H. Shu, G. Zhao, X. Lva, H. Caic, Densityfunctional theory and ab initio Hartree–Fork studies on the structural parameters and chemical activity of the free radicals generated by benzoquinone and hydroquinone, Bioorg. Med. Chem., 13 (2005) 5658–5667.
  16. E.M. Rodríguez, B. Núñez, G. Fernández, F.J. Beltrán, Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water, Appl. Catal., B, 89 (2009) 214–222.
  17. E. Rodríguez, M. Mimbrero, F.J. Masa, F.J. Beltrán, Homogeneous iron-catalyzed photochemical degradation of muconic acid in water, Water Res., 41 (2007) 1325–1333.
  18. E. Rodriguez, A. Encinas, F.J. Masa, F.J. Beltran, Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption, Chemosphere, 70 (2008) 1366–1374.
  19. N. Villota, L.M. Camarero, J.M. Lomas, J. Pérez-Arce, Changes of turbidity during the phenol oxidation by photo-Fenton treatment, Environ. Sci. Pollut. Res., 21 (2014) 12208–12216.
  20. K. Biradha, R. Santra, Crystal engineering of topochemical solid state reactions, Chem. Soc. Rev., 42 (2013) 950–967.