References

  1. C. Bauer, P. Jacques, A. Kalt, Photooxidation of an azo dye induced by visible light incident on the surface of TiO2, J. Photochem. Photobiol., A, 140 (2001) 87–92.
  2. S. Tunç, T. Gürkan, O. Duman, On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process, Chem. Eng. J., 181–182 (2012) 431–442.
  3. S. Hashemian, K. Salari, Z. Atashi, Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution, J. Ind. Eng. Chem., 20 (2013) 1892–1900.
  4. S. Hashemian, M. Mirshamsi, Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution, J. Ind. Eng. Chem., 18 (2012) 2010–2015.
  5. S. Hashemian, M. Salimi, Nano composite a potential low cost adsorbent for removal of cyanine, Chem. Eng. J., 188 (2012) 57–63.
  6. M.R. Gadekar, M. Mansoor Ahammed, Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks, Desal. Wat. Treat., 57 (2016) 26392–26400.
  7. V. Lavtižar, C.A. Van Gestel, D. Dolenc, P. Trebše, Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products, Chemosphere, 95 (2014) 408–414.
  8. K.Y. Foo, B.H. Hameed, An overview of dye removal via activated carbon adsorption process, Desal. Wat. Treat., 19 (2010) 255–274.
  9. O. Duman, S. Tunç, T. Gürkan Polat, Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent, Microporous. Mesoporous. Mater., 210 (2015) 176–184.
  10. O. Duman, S. Tunç, T. Gürkan Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109–110 (2015) 22–32.
  11. O. Duman, S. Tunç, T. Gürkan Polat, B. Kancı Bozoğlan, Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption, Carbohydr. Polym., 147 (2016) 79–88.
  12. O. Duman, S. Tunç, B. Kanc, B. Tülin, G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
  13. E. Ayranci, O. Duman, Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions, Chem. Eng. J., 156 (2010) 70–76.
  14. O. Duman, E. Ayranci, Attachment of benzo-crown ethers onto activated carbon cloth to enhance the removal of chromium, cobalt and nickel ions from aqueous solutions by adsorption, J. Hazard. Mater., 176 (2010) 231–238.
  15. O. Duman, E. Ayranci, Adsorption characteristics of benzaldehyde, sulphanilic acid, and p‐phenolsulfonate from water, acid, or base solutions onto activated carbon cloth, Separ. Sci. Technol., 41 (2006) 3673–3692.
  16. E. Ayranci, O. Duman, In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Separ. Sci. Technol., 44 (2009) 3735–3752.
  17. O. Duman, E. Ayranci, Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy, J. Hazard. Mater., 174 (2010) 359–367.
  18. S. Tunç, O. Duman, T. Gürkan, Monitoring the decolorization of acid orange 8 and acid red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study, Ind. Eng. Chem. Res., 52 (2013) 1414–1425.
  19. S.F. Kang, C.H. Liao, M.C. Chen, Pre-oxidation and coagulation of textile wastewater by the Fenton process, Chemosphere, 46 (2002) 923–928.
  20. V. Kavitha, K. Palanivelu, Destruction of cresols by Fenton oxidation process, Water Res., 39 (2005) 3062–3072.
  21. N. Ertugay, F. Nuran Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study, Arab. J. Chem., 2 (2013) S1158–S1163.
  22. J.M. Herrmann, Heterogeneous photocatalysis: state of the art and present applications, Top Catal., 35 (2005) 49–65.
  23. G.K. Pradhan, K.M. Parida, Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for dye degradation, Int. J. Eng. Sci. Technol., 2 (2010) 53–65.
  24. M. Takeuchi, S. Sakai, A. Ebrahimi, M. Matsuoka, M. Anpo, Application of highly functional Ti-oxide-based photocatalysts in clean technologies, Top. Catal., 52 (2009) 1651.
  25. J.D. Laat, H. Gallard, Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling, Environ. Sci. Technol., 33 (1999) 2726–2732.
  26. S.S. Lin, M.D. Gurol, Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanisms, and implications, Environ. Sci. Technol., 32 (1998)1417–1423.
  27. J. Marugán, M.J. López-Muñoz, R. van Grieken, J. Aguado, Photocatalytic decolorization and mineralization of dyes with nano crystalline TiO2/SiO2 materials, Ind. Eng. Chem. Res., 46 (2007) 7605–7610.
  28. S.A. Elfeky, A.S.A. Al-Sherbini, Photocatalytic decomposition of trypan blue over nanocomposite thin films, Kinet. Catal., 52 (2011) 391–396.
  29. D. Zhang, H. Zhao, X. Zhao, Y. Liu, X. Li, Application of hydroxyapatite as catalyst and catalyst carrier, Prog. Chem., 23 (2011) 687–694.
  30. Z. Yaakob, L. Hakim, M.N. Satheesh Kumar, M. Ismail, W.R.W. Daud, Hydroxyapatite supported nickel catalyst for hydrogen production, Am. J. Sci. Ind. Res., 1 (2010) 122–126.
  31. A. Venugopal, M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts: behaviors in the water gas shift reaction, Appl. Catal., A, 245 (2003) 137–147.
  32. N. Phonthammachai, J. Kim, T.J. White, Synthesis and performance of a photo catalytic titania-hydroxyapatite composite, J. Mater. Res., 9 (2008) 2398–2405.
  33. T. Hara, K. Mori, M. Oshiba, T. Mizugaki, K. Ebitani, K. Kaneda, Highly efficient dehalogenation using hydroxyapatite supported palladium nanocluster catalyst with molecular hydrogen, Green Chem., 6 (2004) 507–509.
  34. Z.P. Yang, C.J. Zhang, Adsorption and photocatalytic degradation of bilirubin on hydroxyapatite coatings with nanostructural surface, J. Mol. Catal. A: Chem., 302 (2009) 107–111.
  35. M.P. Reddy, A. Venugopal, M. Subrahmanyam, Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension, Appl. Catal. B: Environ., 69 (2007) 164–170.
  36. Z.P. Yang, X.U. Gong, C.J. Zhang, Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chem. Eng. J., 165 (2010) 117–121.
  37. S. Hamzah, M.F.M. Salleh, Hydroxyapatite/chitosan biocomposite for remazol blue dyes removal, Appl. Mech. Mater., 695 (2014) 106–109.
  38. M. Stylidi, D.I. Kondarides, X.E. Verykios, Pathways of solar light induced photo catalytic degradation of azo dyes in aqueous TiO2 suspensions, Appl. Catal. B: Environ., 40 (2003) 271–286.
  39. H. Nishikawa, K. Omamiuda, Photocatalytic activity of hydroxyapatite for methyl mercaptane, J. Mol. Catal. A: Chem., 179 (2002) 193–200.
  40. C. Rey, J. Lian, M. Grynpas, F. Shapiro, L. Zulkerg, M.J. Glimcher, Non-apatitic environments in bone mineral: FTIR detection, biological properties and changes in several disease states, Connect. Tissue Res., 21 (1989) 267–273.
  41. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite, J. Saudi Chem. Soc., 15 (2011) 263–267.
  42. C. Bouasla, M. El-Hadi Samar, F. Ismail, Degradation of methyl violet 6B dye by the Fenton process, Desalination, 254 (2010) 35–41.
  43. F. Fu, Q. Wang, B. Tang, Effective degradation of C.I. Acid Red 73 by advanced Fenton process, J. Hazard. Mater., 174 (2010) 17–22.
  44. M.S. Lucas, J.A. Peres, Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation, Dyes Pigm., 71 (2006) 236–244.
  45. F. Emami, A.R. Tehrani-Bagha, K.F. Gharanjig, M. Menger, Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye, Desalination, 257 (2010) 124–128.
  46. S.P. Sun, C.J. Li, J.H. Sun, S.H. Shi, M.H. Fan, Q. Zhou, Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study, J. Hazard. Mater., 161 (2009) 1052–1057.
  47. G.E.A. Mahmoud, L.F.M. Ismail, Factors affecting the kinetic parameters related to the degradation of direct yellow 50 by Fenton and photo-Fenton processes, J. Basic Appl. Chem., 1 (2011) 70–79.
  48. S. Hashemian, Fenton-like oxidation of malachite green solutions: kinetic and thermodynamic study, J. Chem., 2013 (2013) 1–7, Article ID 809318. Available at: http://dx.doi.org/10.1155/2013/809318.
  49. L. Nunez, J.A. Garcia-Hortal, F. Torrades, Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes, Dyes Pigm., 75 (2007) 647–652.