References

  1. V. Orescanin, L. Mikelic, S. Lulic, K. Nad, N. Mikulic, M. Rubcic, G. Pavlovic, Purification of electroplating wastewaters utilizing waste by-product ferrous sulfate and wood fly ash, J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng., 39 (2004) 2437–2446.
  2. I.B. Singh, K. Chaturvedi, A.H. Yegneswaran, Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash, Environ. Technol., 28 (2007) 713–721.
  3. S.A. Mirbagherp, S.N. Hosseini, Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse, Desalination, 171 (2004) 85–93.
  4. H.A. Aziz, M.N. Adlan, K.S. Ariffin, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone, Bioresour. Technol., 99 (2008) 1578–1583.
  5. C. Pietraszuk, W. Urbaniak, M. Miętkiewski, B. Staniszewski, K. Witt, B. Powała, Sposób wiązania metali ciężkich w roztworach amoniakalnych, Polish Patent Application no. 214515, 2013.
  6. C. Pietraszuk, W. Urbaniak, M. Miętkiewski, B. Staniszewski, K. Witt, A. Wasilewska, Sposób wiązania metali ciężkich w roztworach amoniakalnych, Polish Patent Application no. 214544, 2013.
  7. L. Elez, V. Orescanin, T. Sofilic, N. Mikulic, D. Ruk, Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters, J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng., 43 (2008) 1471–1423.
  8. A. Pigaga, R. Juškėnas, A. Selskis, Waste treatment of two electroplating solutions of Cu and Zn by mixing and precipitation, Sep. Sci. Technol., 37 (2002) 3155–3168.
  9. W. Sofinska-Chmiel, D. Kolodynska, Application of ion exchangers for the purification of galvanic wastewater from heavy metals, Sep. Sci. Technol., 53 (2018) 1097–1106.
  10. M. Kobya, N. Erdem, E. Demirbas, Treatment of Cr, Ni and Zn from galvanic rinsing wastewater by electrocoagulation process using iron electrodes, Desal. Wat. Treat., 56 (2015) 1191–1201.
  11. I.G. Khalchenko, N.P. Shapkin, A.L. Shkuratov, Development of the technology of separated treatment of galvanic bath waste streams with subsequent heavy metals precipitation, Water Pract. Technol., 12 (2017) 117–122.
  12. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  13. P. Dydo, D. Babilas, A. Jakobik-Kolon, A. Franczak, R. Nycz, Study on the electrodialytic nickel concentration from electroplating industry waste, Sep. Sci. Technol., 53 (2018) 1241–1248.
  14. S.S. Hosseini, E. Bringas, N.R. Tan, I. Ortiz, M. Ghahramani, M.A.A. Shahmirzadi, Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: a review, J. Water Process Eng., 9 (2016) 78–110.
  15. M.I.G.S. Almeida, R.W. Cattrall, S.D. Kolev, Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), J. Membr. Sci., 415–416 (2012) 9–23.
  16. D. Kogelnig, A. Regelsberger, A. Stojanovic, F. Jirsa, R. Krachler, B.K. Keppler, A polymer inclusion membrane based on the ionic liquid trihexyl(tetradecyl)phosphonium chloride and PVC for solid–liquid extraction of Zn(II) from hydrochloric acid solution, Monatsh. Chem., 142 (2011) 769–772.
  17. M. Regel-Rosocka, L. Nowak, M. Wiśniewski, Removal of Zn(II) and iron ions from aqueous chloride solutions with phosphonium ionic liquids, Sep. Purif. Technol., 97 (2012) 158–163.
  18. S.D. Kolev, Y. Baba, R.W. Cattrall, T. Tasaki, N. Pereiraa, J.M. Perera, G.W. Stevens, Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di (2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier, Talanta, 78 (2009) 795–799.
  19. B. Pospiech, Studies on iron(III) removal from chloride aqueous solutions by solvent extraction and transport through polymer inclusion membranes with D2EHPA, Physicochem. Prob. Miner. Process., 44 (2010) 195–204.
  20. L. Mitiche, S. Tingry, P. Seta, A. Sahmoune, Facilitated transport of copper(II) across supported liquid membrane and polymeric plasticized membrane containing 3-phenyl-4-benzoylisoxazol- 5-one as carrier, J. Membr. Sci., 325 (2008) 605–611.
  21. E. Radzyminska-Lenarcik, R. Ulewicz, M. Ulewicz, Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole, Desal. Wat. Treat., 102 (2018) 211–219.
  22. K. Witt, E. Radzyminska-Lenarcik, A. Kosciuszko, M. Gierszewska, K. Ziuziakowski, The influence of the morphology and mechanical properties of polymer inclusion membranes (PIMs) on zinc ion separation from aqueous solutions, Polymers, 10 (2018) 134–147.
  23. C.-V.I. Gherasim, G. Bourceanu, R.-I. Olariu, C. Arsene, Removal of lead(II) from aqueous solutions by a polyvinyl-chloride inclusion membrane without added plasticizer, J. Membr. Sci., 377 (2011) 167–174.
  24. J. de Gyves, A.M. Hernández-Andaluz, E.R. de San Miguel, LIX®-loaded polymer inclusion membrane for copper(II) transport: 2. Optimization of the efficiency factors (permeability, selectivity, and stability) for LIX® 84-I, J. Membr. Sci., 268 (2006) 142–149.
  25. K. Witt, E. Radzyminska-Lenarcik, W. Urbaniak, Selective transport of zinc ions through novel polymer inclusion membranes (PIMs) containing β-diketone derivatives as carrier reagents, Sep. Sci. Technol., 51 (2016) 2620–2627.
  26. F. Albarède, Geochemistry, An Introduction, Cambridge University Press, UK, 2003, pp. 99–100.
  27. D. Zioui, O. Arous, N. Mameri, H. Kerdjoudj, M. San Sebastian, J.L. Vilas, J. Nunes-Pereira, S. Lanceros-Méndez, Membranes based on polymer miscibility for selective transport and separation of metallic ions, J. Hazard. Mater., 336 (2017) 188–194.