References

  1. A.B. Kołtuniewicz, E. Drioli, Membranes in Clean Technologies, Theory and Practice, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
  2. P. Schmidt, J. Micovic, P. Lutze, A. Górak, Organic Solvent Nanofiltration – Challenges and Approaches of an Innovative Membrane Separation Process, Chem. Ing. Tech., 86 (2014) 602–610.
  3. P. Marchetti, A.G. Livingston, Predictive membrane transport models for organic solvent nanofiltration: how complex do we need to be?, J. Membr. Sci., 476 (2015) 530–553.
  4. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  5. A.E. Yaroshchuk, Osmosis and reverse osmosis osmosis in finecharged diaphragms and membranes, Adv. Colloid Interface Sci., 60 (1995) 1–93.
  6. E. Hoffer, O. Kedem, Hyperfiltration in charged membranes: the fixed charge model, Desalination, 2 (1967) 25–39.
  7. T. Tsuru, S. Nakao, S. Kimura, Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions, J. Chem. Eng. Japan, 24 (1991) 511–515.
  8. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  9. W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofitration – critical assessment and model development, Chem. Eng. Sci., 57 (2002) 1121–1137.
  10. S. Lee, R.M. Lueptow, Membrane rejection of nitrogen compounds, Environ. Sci. Technol., 35 (2001) 3008–3018.
  11. K. Wesołowska, S. Koter, M. Bodzek, Modelling of nanofiltration in softening water, Desalination, 162 (2004) 137–151.
  12. V. Hoshyargar, F. Fadaei, S.N. Ashrafizadeh, Mass transfer simulation of nanofiltration membranes for electrolyte solutions through generalized Maxwell–Stefan approach, Korean J. Chem. Eng., 32 (2015) 1388–1404.
  13. A. Szymczyk, P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
  14. Y. Lanteri, P. Fievet, A. Szymczyk, Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements, J. Colloid Interface Sci., 331 (2009) 148–155.
  15. A.E. Yaroshchuk, Dielectric exclusion of ions from membranes, Adv. Colloid Interface Sci., 85 (2000) 193–230.
  16. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  17. S. Bouranene, P. Fievet, A. Szymczyk, Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model, Chem. Eng. Sci., 64 (2009) 3789–3798.
  18. W.R. Bowen, H. Mukhtar, Characterization and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263–274.
  19. D. Vezzani, S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes, Desalination, 149 (2002) 477–483.
  20. G. Hagmeyer, R. Gimbel, Modelling the salt rejection of nanofiltration membranes for ternary mixtures and for single salts at different pH values, Desalination, 117 (1998) 247–256.
  21. A. Santafé-Moros, J.M. Gozálvez-Zafrilla, J. Lora-García, Nitrate removal from ternary ionic solutions by a tight nanofiltration membrane, Desalination, 204 (2007) 63–71.
  22. A. Escoda, S. Déon, P. Fievet, Assessment of dielectric contribution in the modeling of multi-ionic transport through nanofiltration membranes, J. Membr. Sci., 378 (2011) 214–223.
  23. D.L. Oatley, L. Llenas, R. Pérez, P.M. Williams, X. Martínez-Lladó, M. Rovira, Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation, Adv. Colloid Interface Sci., 173 (2012) 1–11.
  24. D.L. Oatley, L. Llenas, N.H.M. Aljohani, P.M. Williams, X. Martínez-Lladó, M. Rovira, J. de Pablo, Investigation of the dielectric properties of nanofiltration membranes. Desalination, 315 (2013) 100–106.
  25. D.L. Oatley-Radcliffe, S.R. Williams, M.S. Barrow, P.M. Williams, Critical appraisal of current nanofiltration modelling strategies for seawater desalination and further insights on dielectric exclusion, Desalination, 343 (2014) 154–161.
  26. A. Yaroshchuk, Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion, Sep. Purif. Technol., 22–23 (2001) 143–158.
  27. I. Koyuncu, Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes, J. Environ. Sci. Health, Part A, 37 (2002) 1347–1359.
  28. F. Garcia, D. Ciceron, A. Saboni, S. Alexandrova, Nitrate ions elimination from drinking water by nanofiltration: membrane choice, Sep. Purif. Technol., 52 (2006) 196–200.
  29. A. Noworyta, T. Koziol, A. Trusek-Holownia, A system for cleaning condensates containing ammonium nitrate by the reverse osmosis method, Desalination, 156 (2003) 397–402.
  30. G.M. Fu, T. Cai, Y. Li, Concentration of ammoniacal nitrogen in effluent from wet scrubbers using reverse osmosis membrane, Biosyst. Eng., 109 (2011) 235–240.
  31. D. Carter, L. Rose, T. Awobusuyi, M. Gauthier, F.H. Tezel, B. Kruczek, Characterization of commercial RO membranes for the concentration of ammonia converted to ammonium sulfate from anaerobic digesters, Desalination, 368 (2015) 127–134.
  32. M.C. Wilbert, S. Delagah, J. Pellegrino, Variance of streaming potential measurements, J. Membr. Sci., 161 (1999) 247–261.
  33. P. Meares, Coupling of ion and water fluxes in synthetic membranes, J. Membr. Sci., 8 (1981) 295.
  34. P. Dechadilok, W.M. Deen, Hindrance factors for diffusion and convection in pores, Ind. Eng. Chem. Res., 45 (2006) 6953–6959.
  35. W.M. Deen, Hindered transport of large molecules in liquidfilled pores, AIChE J., 33 (1987) 1409–1425.
  36. A.L. Zydney, Stagnant film model for concentration polarization in membrane systems, J. Membr. Sci., 130 (1997) 275–281.
  37. A.E. Yaroshchuk, Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification, J. Membr. Sci., 198 (2002) 285–297.
  38. S. Koter, Determination of the parameters of the Spiegler Kedem Katchalsky model for nanofiltration of single electrolyte solutions, Desalination, 198 (2006) 335–345.
  39. K. Thibault, H.C. Zhu, A. Szymczyk, G.M. Li, The averaged potential gradient approach to model the rejection of electrolyte solutions using nanofiltration: model development and assessment for highly concentrated feed solutions, Sep. Purif. Technol., 153 (2015) 126–137.
  40. A.A. Rashin, B. Honig, Reevaluation of the Born model of ion hydration, J. Phys. Chem., 89 (1985) 5588–5593.
  41. C.S. Babu, C. Lim, A new interpretation of the effective Born radius from simulation and experiment, Chem. Phys. Lett., 310 (1999) 225–228.
  42. E.R. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  43. Y. Miller, J.L. Thomas, D.D. Kemp, B.J. Finlayson-Pitts, M.S. Gordon, D.J. Tobias, R.B. Gerber, Structure of large nitratewater clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry, J. Phys. Chem. A, 113 (2009) 12805–12814.
  44. B. Ellis, R. Smith, Eds., Polymers. A Property Database, 2nd ed., CRC Press, Boca Raton, 2009.
  45. X. Lefebvre, J. Palmeri, P. David, Nanofiltration theory: an analytic approach for single salts, J. Phys. Chem. B, 108 (2004) 16811–16824.
  46. R.A. Robinson, R.H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.
  47. O. Kedem, A. Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol., 45 (1961) 143–179.
  48. P. Dydo, Transport model for boric acid, monoborate and borate complexes across thin-film composite reverse osmosis membrane, Desalination, 311 (2013) 69–79.
  49. A. Escoda, Y. Lanteri, P. Fievet, S. Déon, A. Szymczyk, Determining the dielectric constant inside pores of nanofiltration membranes from membrane potential measurements, Langmuir, 26 (2010) 14628–14635.
  50. J.O’M. Bockris, A.K.N. Reddy, Modern Electrochemistry. An Introduction to an Interdisciplinary Area, vol. 2, Plenum Press, New York, 1970.
  51. H. Itoh, H. Sakuma, Dielectric constant of water as a function of separation in a slab geometry: a molecular dynamics study, J. Chem. Phys., 142 (2015) 184703.
  52. S. Deon, A. Escoda, P. Fievet, A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes, Chem. Eng. Sci., 66 (2011) 2823–2832.
  53. P. Wang, A. Anderko, Computation of dielectric constants of solvent mixtures and electrolyte solutions, Fluid Phase Equilib., 186 (2001) 103–122.
  54. A. Efligenir, P. Fievet, S. Deon, R. Salut, Characterization of the isolated active layer of a NF membrane by electrochemical impedance spectroscopy, J. Membr. Sci., 477 (2015) 172–182.
  55. M. Montalvillo, V. Silva, L. Palacio, A. Hernández, P. Prádanos, Dielectric properties of electrolyte solutions in polymeric nanofiltration membranes, Desal. Wat. Treat., 27 (2011) 25–30.
  56. A.A. Hussain, S.K. Nataraj, M.E.E. Abashar, I.S. Al-Mutaz, T.M. Aminabhavi, Prediction of physical properties of nanofiltration membranes using experiment and theoretical models, J. Membr. Sci., 310 (2008) 321.
  57. D.G. Miller, Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients lij for isothermal vector transport processes in binary electrolyte systems, J. Phys. Chem., 70 (1966) 2639–2659.