References
- A.B. Kołtuniewicz, E. Drioli, Membranes in Clean Technologies,
Theory and Practice, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2008.
- P. Schmidt, J. Micovic, P. Lutze, A. Górak, Organic Solvent
Nanofiltration – Challenges and Approaches of an Innovative
Membrane Separation Process, Chem. Ing. Tech., 86 (2014)
602–610.
- P. Marchetti, A.G. Livingston, Predictive membrane transport
models for organic solvent nanofiltration: how complex do we
need to be?, J. Membr. Sci., 476 (2015) 530–553.
- K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration
(reverse osmosis): criteria for efficient membranes, Desalination,
1 (1966) 311–326.
- A.E. Yaroshchuk, Osmosis and reverse osmosis osmosis in finecharged
diaphragms and membranes, Adv. Colloid Interface
Sci., 60 (1995) 1–93.
- E. Hoffer, O. Kedem, Hyperfiltration in charged membranes:
the fixed charge model, Desalination, 2 (1967) 25–39.
- T. Tsuru, S. Nakao, S. Kimura, Calculation of ion rejection
by extended Nernst–Planck equation with charged reverse
osmosis membranes for single and mixed electrolyte solutions,
J. Chem. Eng. Japan, 24 (1991) 511–515.
- W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of
nanofiltration membranes for predictive purposes – use of salts,
uncharged solutes and atomic force microscopy, J. Membr. Sci.,
126 (1997) 91–105.
- W.R. Bowen, J.S. Welfoot, Modelling the performance of
membrane nanofitration – critical assessment and model
development, Chem. Eng. Sci., 57 (2002) 1121–1137.
- S. Lee, R.M. Lueptow, Membrane rejection of nitrogen
compounds, Environ. Sci. Technol., 35 (2001) 3008–3018.
- K. Wesołowska, S. Koter, M. Bodzek, Modelling of nanofiltration
in softening water, Desalination, 162 (2004) 137–151.
- V. Hoshyargar, F. Fadaei, S.N. Ashrafizadeh, Mass transfer
simulation of nanofiltration membranes for electrolyte solutions
through generalized Maxwell–Stefan approach, Korean J. Chem.
Eng., 32 (2015) 1388–1404.
- A. Szymczyk, P. Fievet, Investigating transport properties of
nanofiltration membranes by means of a steric, electric and
dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
- Y. Lanteri, P. Fievet, A. Szymczyk, Evaluation of the steric,
electric, and dielectric exclusion model on the basis of salt
rejection rate and membrane potential measurements, J. Colloid
Interface Sci., 331 (2009) 148–155.
- A.E. Yaroshchuk, Dielectric exclusion of ions from membranes,
Adv. Colloid Interface Sci., 85 (2000) 193–230.
- S. Bandini, D. Vezzani, Nanofiltration modeling: the role of
dielectric exclusion in membrane characterization, Chem. Eng.
Sci., 58 (2003) 3303–3326.
- S. Bouranene, P. Fievet, A. Szymczyk, Investigating nanofiltration
of multi-ionic solutions using the steric, electric
and dielectric exclusion model, Chem. Eng. Sci., 64 (2009)
3789–3798.
- W.R. Bowen, H. Mukhtar, Characterization and prediction of
separation performance of nanofiltration membranes, J. Membr.
Sci., 112 (1996) 263–274.
- D. Vezzani, S. Bandini, Donnan equilibrium and dielectric
exclusion for characterization of nanofiltration membranes,
Desalination, 149 (2002) 477–483.
- G. Hagmeyer, R. Gimbel, Modelling the salt rejection of
nanofiltration membranes for ternary mixtures and for single
salts at different pH values, Desalination, 117 (1998) 247–256.
- A. Santafé-Moros, J.M. Gozálvez-Zafrilla, J. Lora-García, Nitrate
removal from ternary ionic solutions by a tight nanofiltration
membrane, Desalination, 204 (2007) 63–71.
- A. Escoda, S. Déon, P. Fievet, Assessment of dielectric
contribution in the modeling of multi-ionic transport through
nanofiltration membranes, J. Membr. Sci., 378 (2011) 214–223.
- D.L. Oatley, L. Llenas, R. Pérez, P.M. Williams, X. Martínez-Lladó, M. Rovira, Review of the dielectric properties of
nanofiltration membranes and verification of the single
oriented layer approximation, Adv. Colloid Interface Sci., 173
(2012) 1–11.
- D.L. Oatley, L. Llenas, N.H.M. Aljohani, P.M. Williams,
X. Martínez-Lladó, M. Rovira, J. de Pablo, Investigation of the
dielectric properties of nanofiltration membranes. Desalination,
315 (2013) 100–106.
- D.L. Oatley-Radcliffe, S.R. Williams, M.S. Barrow, P.M. Williams,
Critical appraisal of current nanofiltration modelling strategies
for seawater desalination and further insights on dielectric
exclusion, Desalination, 343 (2014) 154–161.
- A. Yaroshchuk, Non-steric mechanisms of nanofiltration:
superposition of Donnan and dielectric exclusion, Sep. Purif.
Technol., 22–23 (2001) 143–158.
- I. Koyuncu, Effect of operating conditions on the separation
of ammonium and nitrate ions with nanofiltration and reverse
osmosis membranes, J. Environ. Sci. Health, Part A, 37 (2002)
1347–1359.
- F. Garcia, D. Ciceron, A. Saboni, S. Alexandrova, Nitrate ions
elimination from drinking water by nanofiltration: membrane
choice, Sep. Purif. Technol., 52 (2006) 196–200.
- A. Noworyta, T. Koziol, A. Trusek-Holownia, A system for
cleaning condensates containing ammonium nitrate by the
reverse osmosis method, Desalination, 156 (2003) 397–402.
- G.M. Fu, T. Cai, Y. Li, Concentration of ammoniacal nitrogen in
effluent from wet scrubbers using reverse osmosis membrane,
Biosyst. Eng., 109 (2011) 235–240.
- D. Carter, L. Rose, T. Awobusuyi, M. Gauthier, F.H. Tezel,
B. Kruczek, Characterization of commercial RO membranes for
the concentration of ammonia converted to ammonium sulfate
from anaerobic digesters, Desalination, 368 (2015) 127–134.
- M.C. Wilbert, S. Delagah, J. Pellegrino, Variance of streaming
potential measurements, J. Membr. Sci., 161 (1999) 247–261.
- P. Meares, Coupling of ion and water fluxes in synthetic
membranes, J. Membr. Sci., 8 (1981) 295.
- P. Dechadilok, W.M. Deen, Hindrance factors for diffusion
and convection in pores, Ind. Eng. Chem. Res., 45 (2006)
6953–6959.
- W.M. Deen, Hindered transport of large molecules in liquidfilled
pores, AIChE J., 33 (1987) 1409–1425.
- A.L. Zydney, Stagnant film model for concentration polarization
in membrane systems, J. Membr. Sci., 130 (1997) 275–281.
- A.E. Yaroshchuk, Rejection of single salts versus transmembrane
volume flow in RO/NF: thermodynamic properties, model of
constant coefficients, and its modification, J. Membr. Sci., 198
(2002) 285–297.
- S. Koter, Determination of the parameters of the Spiegler
Kedem Katchalsky model for nanofiltration of single electrolyte
solutions, Desalination, 198 (2006) 335–345.
- K. Thibault, H.C. Zhu, A. Szymczyk, G.M. Li, The averaged
potential gradient approach to model the rejection of electrolyte
solutions using nanofiltration: model development and
assessment for highly concentrated feed solutions, Sep. Purif.
Technol., 153 (2015) 126–137.
- A.A. Rashin, B. Honig, Reevaluation of the Born model of ion
hydration, J. Phys. Chem., 89 (1985) 5588–5593.
- C.S. Babu, C. Lim, A new interpretation of the effective Born
radius from simulation and experiment, Chem. Phys. Lett., 310
(1999) 225–228.
- E.R. Nightingale Jr., Phenomenological theory of ion solvation.
Effective radii of hydrated ions, J. Phys. Chem., 63 (1959)
1381–1387.
- Y. Miller, J.L. Thomas, D.D. Kemp, B.J. Finlayson-Pitts,
M.S. Gordon, D.J. Tobias, R.B. Gerber, Structure of large nitratewater
clusters at ambient temperatures: simulations with effective
fragment potentials and force fields with implications for
atmospheric chemistry, J. Phys. Chem. A, 113 (2009) 12805–12814.
- B. Ellis, R. Smith, Eds., Polymers. A Property Database, 2nd ed.,
CRC Press, Boca Raton, 2009.
- X. Lefebvre, J. Palmeri, P. David, Nanofiltration theory: an
analytic approach for single salts, J. Phys. Chem. B, 108 (2004)
16811–16824.
- R.A. Robinson, R.H. Stokes, Electrolyte Solutions, Butterworths,
London, 1959.
- O. Kedem, A. Katchalsky, A physical interpretation of the
phenomenological coefficients of membrane permeability,
J. Gen. Physiol., 45 (1961) 143–179.
- P. Dydo, Transport model for boric acid, monoborate and
borate complexes across thin-film composite reverse osmosis
membrane, Desalination, 311 (2013) 69–79.
- A. Escoda, Y. Lanteri, P. Fievet, S. Déon, A. Szymczyk,
Determining the dielectric constant inside pores of nanofiltration
membranes from membrane potential measurements,
Langmuir, 26 (2010) 14628–14635.
- J.O’M. Bockris, A.K.N. Reddy, Modern Electrochemistry. An
Introduction to an Interdisciplinary Area, vol. 2, Plenum Press,
New York, 1970.
- H. Itoh, H. Sakuma, Dielectric constant of water as a function
of separation in a slab geometry: a molecular dynamics study,
J. Chem. Phys., 142 (2015) 184703.
- S. Deon, A. Escoda, P. Fievet, A transport model considering
charge adsorption inside pores to describe salts rejection by
nanofiltration membranes, Chem. Eng. Sci., 66 (2011) 2823–2832.
- P. Wang, A. Anderko, Computation of dielectric constants of
solvent mixtures and electrolyte solutions, Fluid Phase Equilib.,
186 (2001) 103–122.
- A. Efligenir, P. Fievet, S. Deon, R. Salut, Characterization of
the isolated active layer of a NF membrane by electrochemical
impedance spectroscopy, J. Membr. Sci., 477 (2015) 172–182.
- M. Montalvillo, V. Silva, L. Palacio, A. Hernández, P. Prádanos,
Dielectric properties of electrolyte solutions in polymeric
nanofiltration membranes, Desal. Wat. Treat., 27 (2011) 25–30.
- A.A. Hussain, S.K. Nataraj, M.E.E. Abashar, I.S. Al-Mutaz,
T.M. Aminabhavi, Prediction of physical properties of
nanofiltration membranes using experiment and theoretical
models, J. Membr. Sci., 310 (2008) 321.
- D.G. Miller, Application of irreversible thermodynamics
to electrolyte solutions. I. Determination of ionic transport
coefficients lij for isothermal vector transport processes in
binary electrolyte systems, J. Phys. Chem., 70 (1966) 2639–2659.