References

  1. R. Remis, M.A. Aguado Monsonet, L.D. Roudier, S. Sancho, JRC Reference Report, Best Available Techniques (BAT) Reference Document for Iron and Steel Production, Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), 2013, Available at: http://eippcb.jrc.ec.europa.eu/reference/BREF/IS_Adopted_03_2012.pdf.
  2. K. Wright, Coke Oven Gas Treatment. Tar, Liquor, Ammonia, The Coke Oven Manager’s Year Book, 2001.
  3. E. Maranon, I. Vazquez, J. Rodriguez, L. Castrillon, Y. Fernandez, H. Lopez, Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale, Bioresour. Technol., 99 (2008) 4192–4198.
  4. F. Ozyonar, B. Karagozogly, Treatment of pre-treated coke wastewater by electrocoagulation and electrochemical peroxidation processes, Sep. Purif. Technol., 150 (2015) 268–277.
  5. A. Kwiecińska, R. Lajnert, R. Bigda, Coke oven wastewater – formation, treatment and utilization methods – a review, Proc. ECOpole, 11 (2017) 19–28.
  6. P. Pal, R. Kumar, Treatment of coke wastewater: a critical review for developing sustainable management strategies, Sep. Purif. Rev., 43 (2014) 89–123.
  7. M. Smol, M. Włodarczyk-Makuła, Effectiveness in the removal of polycyclic aromatic hydrocarbons from industrial wastewater by ultrafiltration technique, Arch. Environ. Prot., 38 (2012) 49–58.
  8. X. Jin, E. Li, S. Lu, Z. Qiu, Q. Sui, Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis, J. Environ. Sci. (China), 25 (2013) 1565–1574.
  9. W.T. Zhao, X. Huang, D.J. Lee, X.H. Wang, Y.X. Shen, Use of submerged anaerobic-anoxic-oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention, J. Membr. Sci., 330 (2009) 57–64.
  10. J. Shen, H. Zhao, H. Cao, Y. Zhang, Y. Cehn, Removal of total cyanide in coking wastewater during a coagulation process: significance of organic polymers, J. Environ. Sci., 26 (2014) 231–239.
  11. M.K. Ghose, Complete physico-chemical treatment for coke plants effluents, Water Res., 36 (2002) 1127–1134.
  12. W. Hiao-xue, Z. Zi-yang, F. Qing-lan, Y. Xiao-ying, G. Dongsheng, The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity, J. Hazard. Mater., 2398 (2012) 135–141.
  13. D. Wei, K. Osseo-Asare, Particulate pyrite formation by the Fe3+ HS reaction in aqueous solutions: effects of solution composition, Colloids Surf., A, 118 (1996) 51–61.
  14. D.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong, Cyanide in Water and Soil: Chemistry, Risk, and Management, CRC Press, Boca Raton, FL, 2005.
  15. M. Tyagi, A. Rana, S. Kumari, S. Jagadevan, Adsorptive removal of cyanide from coke oven wastewater onto zero-valent iron: optimization through response surface methodology, isotherm and kinetic studies, J. Cleaner Prod., 178 (2018) 398–407.
  16. S. Morling, N. Åstrand, A.K. Lidar, Biological removal of nitrogen compounds at a coke-oven effluent stream, J. Water Resour. Prot., 4 (2012) 400–406.
  17. N. Puevo, N. Miguel, J.L.Ovelleiro, M.P. Ornad, Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process, Water Sci. Technol., 2 (2016) 480–490.
  18. V.J. Inglezakis, S. Malamis, A. Omirkhan, J. Nauruzbayeva, Z. Makhtayeva, T. Seidakhmetov, A. Kudarova, Investigating the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process employed for the treatment of petroleum wastewater, J. Environ. Manage., 203 (2017) 825–830.
  19. A.O. Tirler, I. Persson, T.S. Hofer, B.M. Rode, Is the hexacyanoferrate(II) anion stable in aqueous solution? A combined theoretical and experimental study, Inorg. Chem., 54 (2015) 10355–10341.
  20. Y. Mo Kim, D.S. Lee, C. Park, D. Park, J.M. Park, Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process, Water Res., 45 (2011) 1267–1279.
  21. J. Suárez, J. Villa, B. Salgado, Experience with integrated ultrafiltration/reverse osmosis systems in industrial applications in Spain, Desal. Wat. Treat., 51 (2013) 423–431.
  22. M. Bodzek, K. Konieczny, Membrane techniques in the removal of inorganic anionic micropollutants from water environment – state of the art, Arch. Environ. Prot., 37 (2011) 15–29.
  23. K. Gaska, A. Generowicz, I. Zimoch, J. Ciula, Z. Iwanicka, A high-performance computing (HPC) based integrated multithreaded model predictive control (MPC) for water supply networks, ACEE, 10 (2017) 141–151.
  24. K. Mielczarek, A. Kwarciak-Kozłowska, J. Bohdziewicz, Conking wastewater treatment in the integrated system coagulation – pressure membrane techniques, Rocz. Ochr. Śr., 13 (2011) 1965–1984.
  25. K. Mielczarek, J. Bohdziewicz, A. Kwarciak-Kozłowska, I. Korus, Modeling of ultrafiltration process efficiency in coke plant wastewater treatment with the use of industrial membranes, Ecol. Chem. Eng. A., 19 (2012) 457–470.
  26. S. Pimple, S. Karikkat, M. Devanna, V. Yanamadni, R. Sah, S.M.R. Prasad, Comparison of MBR/RO and UF/RO hybrid systems for the treatment of coke-oven effluents, Desal. Wat. Treat., 57 (2016) 3002–3010.