References

  1. A.G. Fane, T.H. Chong, P. Le-Clech, Fouling in Membrane Processes, E. Drioli, L. Giorno, Eds., Membrane Operations – Innovative Separations and Transformation, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, pp. 121–138.
  2. R. Field, Fundamentals of Fouling, K.-V. Peinemann, S. Pereira Nunes, Eds., Membranes for Water Treatment, Vol. 4, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, pp. 1–23.
  3. F. Arndt, U. Roth, H. Nirschl, S. Schutz, G. Guthausen, New insights into sodium alginate fouling of ceramic hollow fiber membranes by NMR imaging, AIChE J., 62 (2016) 2459–2467.
  4. L. Benavente, C. Coetsier, A. Venault, Y. Chang, C. Causserand, P. Bacchin, P. Aimar, FTIR mapping as a simple and powerful approach to study membrane coating and fouling, J. Membr. Sci., 520 (2016) 477–489.
  5. J.S. Ho, J.H. Low, L.N. Sim, R.D. Webster, S.A. Rice, A.G. Fane, H.G.L. Coster, In-situ monitoring of biofouling on reverse osmosis membranes: detection and mechanistic study using electrical impedance spectroscopy, J. Membr. Sci., 518 (2016) 229–242.
  6. K.-L. Tung, H.-R. Damodar, R.-A. Damodar, T.-T. Wu, Y.-L. Li, N.-J. Lin, C.-J. Chuang, S.-J. You, K.-J. Hwang, Online monitoring of particle fouling in a submerged membrane filtration system using a photointerrupt sensor array, J. Membr. Sci., 407–408 (2012) 58–70.
  7. X. Liu, W. Li, T.H. Chong, A.G. Fane, Effects of spacer orientations on the cake formation during membrane fouling: quantitative analysis based on 3D OCT imaging, Water Res., 110 (2017) 1–14.
  8. O. Thygesen, M.A.B. Hedegaard, A. Zarebska, C. Beleites, C. Krafft, Membrane fouling from ammonia recovery analyzed by ATR-FTIR imaging, Vib. Spectrosc., 72 (2014) 119–123.
  9. M. Bass, V. Freger, Facile evaluation of coating thickness on membranes using ATR-FTIR, J. Membr. Sci., 492 (2015) 348–354.
  10. K.-L. Tung, S. Wang, W.-M. Lu, C.-H. Pan, In situ measurement of cake thickness distribution by a photointerrupt sensor, J. Membr. Sci., 190 (2001) 57–67.
  11. M. Hamachi, M. Mietton-Peuchot, Experimental investigations of cake characteristics in crossflow microfiltration, Chem. Eng. Sci., 54 (1999) 4023–4030.
  12. V.Y. Lister, C. Lucas, P.W. Gordon, Y.M.J. Chew, D.I. Wilson, Pressure mode fluid dynamic gauging for studying cake build-up in cross-flow microfiltration, J. Membr. Sci., 366 (2011) 304–313.
  13. K. Akerman, Techniczne zastosowanie metody atomów znaczonych, WNT, Warsaw, 1970.
  14. Radiotracer Applications in Industry — A Guidebook, Technical reports series no. 423, International Atomic Energy Agency, Vienna, 2004.
  15. C. Agarwal, A.K. Pandey, S. Chaudhury, V.T. Aher, A.K. Patra, P.U. Sastry, A. Goswami, Ionic transport in polyelectrolytefilled cation-exchange membranes, J. Membr. Sci., 446 (2013) 125–131.
  16. P. Jagasia, P.K. Mohapatra, D.R. Raut, P.S. Dhami, V.C. Adya, A. Sengupta, P.M. Gandhi, P.K. Wattal, Pertraction of radiocesium from acidic feeds across supported liquid membranes containing calix-crown-6 ligands in a fluorinated diluent, J. Membr. Sci., 487 (2015) 127–134.
  17. R.M. Mc Donogh, H. Bauser, N. Stroh, U. Grauschopf, Experimental in situ measurement of concentration polarisation during ultra- and micro-filtration of bovine serum albumin and Dextran Blue solutions, J. Membr. Sci., 104 (1995) 51–63.
  18. A. Miskiewicz, G. Zakrzewska-Trznadel, Investigation of hydrodynamic behaviour of membranes using radiotracer techniques, EPJ Web Conf., 50 (2013) 01005-p1-p7.
  19. A. Miskiewicz, G. Zakrzewska-Trznadel, A. Dobrowolski, A. Jaworska-Sobczak, Using tracer methods and experimental design approach for examination of hydrodynamic conditions in membrane separation modules, Appl. Radiat. Isot., 70 (2012) 837–847.
  20. H. Ito, Compaction properties of granular bentonites, Appl. Clay Sci., 31 (2006) 47–55.