References
- F. Sarmiento, R. Peralta, J.M. Blamey, Cold and hot
extremozymes: industrial relevance and current trends, Front.
Bioeng. Biotechnol., 3 (2015) 1–15.
- M. van Oort, Enzymes in Food Technology - Introduction,
R.J. Whitehurst, M. van Oort, Eds., Enzymes in Food Technology,
Blackwell Publishing Ltd, Iowa, 2010, pp. 13–15.
- Joint FAO/WHO Expert Committee on Food Additives
(JECFA), Toxicological Evaluation of Some Food Additives
Including Anticaking Agent, Antimicrobials, Antioxidants,
Emulsifiers, and Thickenings Agents, FAO Nutrition Meeting
Report Series No. 53A, 1974, WHO Food Additives Series
No. 5, 1974.
- B.A. Saha, M.Y. Ali, M. Chakraborty, Z. Islam, A.K. Hira, Study
on the preservation of raw milk with hydrogen peroxide (H2O2)
for rural dairy farmers, Pak. J. Nutr., 2 (2003) 36–42.
- I.E.M. Zubeir, O.A.O. Owni, Antimicrobial resistance of
bacteria associated with raw milk contaminated by chemical
preservatives, World J. Dairy Food Sci., 4 (2009) 65–69.
- P. Singh, N. Gandhi, Milk preservatives and adulterants:
processing, regulatory and safety issues, Food Rev. Int., 31
(2015) 236–261.
- P. Kanyong, S. Rawlinson, J. Davis, A non-enzymatic sensor
based on the redox of ferrocene carboxylic acid on ionic liquid
film-modified screen-printed graphite electrode for the analysis
of hydrogen peroxide residues in milk, J. Electroanal. Chem.,
766 (2016) 147–151.
- B.S. Sooch, B.S. Kauldhar, M. Puri, Catalases: Types, Structure,
Applications and Future Outlook, R.C. Ray, C.M. Rossel, Eds.,
Microbial Enzyme Technology in Food Applications, Boca
Raton, CRC Press, 2017, pp. 241–250.
- M.C.R. Franssen, P. Steunenberg, E.L. Scott, H. Zuilhof, J.P.M.
Sanders, Immobilised enzymes in biorenewables production,
Chem. Soc. Rev., 42 (2013) 6491–6533.
- K. Labus, A. Drozd, A. Trusek-Holownia, Preparation and
characterisation of gelatine hydrogels predisposed to use as
matrices for effective immobilisation of biocatalysts, Chem.
Pap., 70 (2016) 523–530.
- D. Murtinho, A.R. Lagoa, F.A.P. Garcia, M.H. Gil, Cellulose
derivatives membranes as supports for immobilisation of
enzymes, Cellulose, 5 (1998) 299–308.
- A. Trusek-Holownia, A catalytic membrane for hydrolysis
reaction carried out in the two-liquid phase system – membrane
preparation and characterisation, mathematical model of the
process, J. Membr. Sci., 259 (2005) 74–84.
- A. Trusek-Holownia, A. Noworyta, Peptides removing in
enzymatic membrane bioreactor, Desalination, 221 (2008)
543–551.
- O. Lowry, N. Rosebrough, A. Farr, R. Randall, Protein
measurement with the Folin phenol reagent, J. Biol. Chem., 193
(1951) 265–270.
- A. Trusek-Holownia, A. Noworyta, Catalase immobilized in
capsules in microorganisms removal from drinking water, milk,
and beverages, Desal. Wat. Treat., 55 (2015) 2721–2727.
- A.S. Meyer, L.H. Pedersen, A. Isaksen, The effect of various
food parameters on the activity and stability of catalase from
Aspergillus niger and catalase from bovine liver, Food Chem., 60
(1997) 137–142.
- E. Akyilmaz, E. Dinckaya, Development of a catalase based
biosensor for alcohol determination in beer samples, Talanta, 61
(2003) 113–118.
- K. Koutsoumanis, A. Pavlis, G.E. Nychas, K. Xanthiakos,
Probabilistic model for Listeria monocytogenes growth during
distribution, retail storage, and domestic storage of pasteurized
milk, Appl. Environ. Microbiol., 76 (2010) 2181–2191.
- I. Safarik, Z. Sabatkova, M. Safarikova, Hydrogen peroxide
removal with magnetically responsive Saccharomyces cerevisiae cells, J. Agric. Food Chem., 56 (2008) 7925–7928.
- N.Y. Farkye, Cheese technology, Int. J. Dairy Technol., 57 (2004)
91–98.
- L.C.C. Silva, Preservatives and neutralizing substances in milk:
analytical sensitivity of official specific and nonspecific tests,
microbial inhibition effect, and residue persistence in milk,
Ciênc. Rural, 45 (2015) 1613–1618.
- Y. Dogac, M. Teke, Immobilization of bovine catalase onto
magnetic nanoparticles, Prep. Biochem. Biotechnol., 43 (2013)
750–765.
- Y. Wang, Y. Guan, Y. Yang, P. Yu, Y. Huang, Enhancing the
stability of immobilized catalase on activated carbon with
gelatin encapsulation, J. Appl. Polym. Sci., 130 (2013) 1498–1502.
- S. Alkan, H. Ceylan, O. Arslan, Bentonite-supported catalase,
J. Serb. Chem. Soc., 70 (2005) 721–726.
- D.L. Schroeder, S.S. Nielsen, K.D. Hayes, The effect of raw
milk storage temperature on plasmin activity and plasminogen
activation in pasteurized milk, Int. Dairy J., 18 (2008) 114–119.
- M.W. Griffiths, J.D. Phillips, D.D. Muir, Effect of lowtemperature
storage on the bacteriological quality of raw milk,
Food Microbiol., 4 (1987) 285–291.
- Y. Ogura, Catalase activity at high concentration of hydrogen
peroxide, Arch. Biochem. Biophys., 96 (1955) 288–300.
- V.S. Thompson, K.D. Schaller, W.A. Apel, Purification and
characterization of a novel thermo-alkali-stable catalase from
Thermus brockianus, Biotechnol. Prog., 19 (2003) 1292–1299.
- A. Trusek-Holownia, A. Noworyta, The template parameters
selection of the efficient utilisation of enzymatic membrane,
Chem. Eng. J., 305 (2016) 54–60.
- J. Switala, P.C. Loewen, Diversity of properties among catalases,
Arch. Biochem. Biophys., 401 (2002) 145–154.
- L. Tarhan, Use of immobilised catalase to remove H2O2 used in
the sterilization of milk, Proc. Biochem., 30 (1994) 623–628.
- E. Akertek, L. Tarhan, Characterization of immobilized catalases
and their application in pasteurization of milk with H2O2, Appl.
Biochem. Biotechnol., 50 (1995) 291–303.