References

  1. F. Sarmiento, R. Peralta, J.M. Blamey, Cold and hot extremozymes: industrial relevance and current trends, Front. Bioeng. Biotechnol., 3 (2015) 1–15.
  2. M. van Oort, Enzymes in Food Technology - Introduction, R.J. Whitehurst, M. van Oort, Eds., Enzymes in Food Technology, Blackwell Publishing Ltd, Iowa, 2010, pp. 13–15.
  3. Joint FAO/WHO Expert Committee on Food Additives (JECFA), Toxicological Evaluation of Some Food Additives Including Anticaking Agent, Antimicrobials, Antioxidants, Emulsifiers, and Thickenings Agents, FAO Nutrition Meeting Report Series No. 53A, 1974, WHO Food Additives Series No. 5, 1974.
  4. B.A. Saha, M.Y. Ali, M. Chakraborty, Z. Islam, A.K. Hira, Study on the preservation of raw milk with hydrogen peroxide (H2O2) for rural dairy farmers, Pak. J. Nutr., 2 (2003) 36–42.
  5. I.E.M. Zubeir, O.A.O. Owni, Antimicrobial resistance of bacteria associated with raw milk contaminated by chemical preservatives, World J. Dairy Food Sci., 4 (2009) 65–69.
  6. P. Singh, N. Gandhi, Milk preservatives and adulterants: processing, regulatory and safety issues, Food Rev. Int., 31 (2015) 236–261.
  7. P. Kanyong, S. Rawlinson, J. Davis, A non-enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk, J. Electroanal. Chem., 766 (2016) 147–151.
  8. B.S. Sooch, B.S. Kauldhar, M. Puri, Catalases: Types, Structure, Applications and Future Outlook, R.C. Ray, C.M. Rossel, Eds., Microbial Enzyme Technology in Food Applications, Boca Raton, CRC Press, 2017, pp. 241–250.
  9. M.C.R. Franssen, P. Steunenberg, E.L. Scott, H. Zuilhof, J.P.M. Sanders, Immobilised enzymes in biorenewables production, Chem. Soc. Rev., 42 (2013) 6491–6533.
  10. K. Labus, A. Drozd, A. Trusek-Holownia, Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalysts, Chem. Pap., 70 (2016) 523–530.
  11. D. Murtinho, A.R. Lagoa, F.A.P. Garcia, M.H. Gil, Cellulose derivatives membranes as supports for immobilisation of enzymes, Cellulose, 5 (1998) 299–308.
  12. A. Trusek-Holownia, A catalytic membrane for hydrolysis reaction carried out in the two-liquid phase system – membrane preparation and characterisation, mathematical model of the process, J. Membr. Sci., 259 (2005) 74–84.
  13. A. Trusek-Holownia, A. Noworyta, Peptides removing in enzymatic membrane bioreactor, Desalination, 221 (2008) 543–551.
  14. O. Lowry, N. Rosebrough, A. Farr, R. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193 (1951) 265–270.
  15. A. Trusek-Holownia, A. Noworyta, Catalase immobilized in capsules in microorganisms removal from drinking water, milk, and beverages, Desal. Wat. Treat., 55 (2015) 2721–2727.
  16. A.S. Meyer, L.H. Pedersen, A. Isaksen, The effect of various food parameters on the activity and stability of catalase from Aspergillus niger and catalase from bovine liver, Food Chem., 60 (1997) 137–142.
  17. E. Akyilmaz, E. Dinckaya, Development of a catalase based biosensor for alcohol determination in beer samples, Talanta, 61 (2003) 113–118.
  18. K. Koutsoumanis, A. Pavlis, G.E. Nychas, K. Xanthiakos, Probabilistic model for Listeria monocytogenes growth during distribution, retail storage, and domestic storage of pasteurized milk, Appl. Environ. Microbiol., 76 (2010) 2181–2191.
  19. I. Safarik, Z. Sabatkova, M. Safarikova, Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells, J. Agric. Food Chem., 56 (2008) 7925–7928.
  20. N.Y. Farkye, Cheese technology, Int. J. Dairy Technol., 57 (2004) 91–98.
  21. L.C.C. Silva, Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk, Ciênc. Rural, 45 (2015) 1613–1618.
  22. Y. Dogac, M. Teke, Immobilization of bovine catalase onto magnetic nanoparticles, Prep. Biochem. Biotechnol., 43 (2013) 750–765.
  23. Y. Wang, Y. Guan, Y. Yang, P. Yu, Y. Huang, Enhancing the stability of immobilized catalase on activated carbon with gelatin encapsulation, J. Appl. Polym. Sci., 130 (2013) 1498–1502.
  24. S. Alkan, H. Ceylan, O. Arslan, Bentonite-supported catalase, J. Serb. Chem. Soc., 70 (2005) 721–726.
  25. D.L. Schroeder, S.S. Nielsen, K.D. Hayes, The effect of raw milk storage temperature on plasmin activity and plasminogen activation in pasteurized milk, Int. Dairy J., 18 (2008) 114–119.
  26. M.W. Griffiths, J.D. Phillips, D.D. Muir, Effect of lowtemperature storage on the bacteriological quality of raw milk, Food Microbiol., 4 (1987) 285–291.
  27. Y. Ogura, Catalase activity at high concentration of hydrogen peroxide, Arch. Biochem. Biophys., 96 (1955) 288–300.
  28. V.S. Thompson, K.D. Schaller, W.A. Apel, Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus, Biotechnol. Prog., 19 (2003) 1292–1299.
  29. A. Trusek-Holownia, A. Noworyta, The template parameters selection of the efficient utilisation of enzymatic membrane, Chem. Eng. J., 305 (2016) 54–60.
  30. J. Switala, P.C. Loewen, Diversity of properties among catalases, Arch. Biochem. Biophys., 401 (2002) 145–154.
  31. L. Tarhan, Use of immobilised catalase to remove H2O2 used in the sterilization of milk, Proc. Biochem., 30 (1994) 623–628.
  32. E. Akertek, L. Tarhan, Characterization of immobilized catalases and their application in pasteurization of milk with H2O2, Appl. Biochem. Biotechnol., 50 (1995) 291–303.