References
- J. Kotowicz, K. Janusz-Szymańska, G. Wiciak, Membrane
technologies for the capture of carbon dioxide from exhaust
gases for the supercritical carbon power plants Wydawnictwo
Politechniki Śląskiej, Monografia – Politechnika Śląska, nr. 551,
Gliwice, 2015 (in Polish).
- M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane techniques
in environmental protection, Wydawnictwo Politechniki Śląskiej,
Gliwice, 1997 (in Polish).
- G. Wiciak, K. Janusz-Szymańska, J. Kotowicz, Experimental and
numerical studies of CO2 separation of polymer membranes
using a gaseous reference mixture, Rynek Energii, 2 (2014)
98–103 (in Polish).
- K. Janusz-Szymańska, G. Wiciak, Comparative analysis of
the results of the numerical and measurement experiment in
the context of research of parameter of CO2 separation using the
membrane method, Energetyka, 11 (2013) 795–799 (in Polish).
- L. Remiorz, Numerical and experimental study of acoustic CO2
separation, Wydawnictwo, Politechniki Śląskiej, Monografia –
Politechnika Śląska nr 562, Gliwice, 2015 (in Polish).
- G. Wiciak , K. Janusz-Szymańska, L. Remiorz, The Impact of
CO2 Concentration on the Properties of a Polymer Membrane
Separator Intended for the CCS Technology, R. Zevenhoven,
Ed., 27th International Conference on Efficiency, Cost, Optimization,
Simulation and Environmental Impact of Energy Systems
(ECOS 2014), Turku, Finland, 15–19 June 2014, Vol. 2, Red
Hook, Curran, 2014, pp. 1316–1330.
- G. Wiciak, L. Remiorz, J. Kotowicz, Instalacja laboratoryjna do
synchronicznych badań separacji ditlenku węgla metodami
membranową i akustyczną. Analiza systemów energetycznych,
Praca zbiorowa, Pod red. B. Węglowskiego, P. Dudy. Kraków:
Wydaw. Politechniki Krakowskiej, 2013, pp. 331–349.
- A. Janusz-Cygan, The Use of Solid Membranes for the Separation
of Carbon Monoxide from Exhaust Gases, Instytut Inżynierii
Chemicznej Polskiej Akademi Nauk – Praca doktorska, Gliwice,
2016 (in Polish).
- K. Warmuziński, A. Janusz-Cygan, M. Jaschik, M. Tańczyk,
A hybrid separation process for the recovery of carbon dioxide
from flue gases, Energy Procedia, 37 (2013) 2154–2163.
- E. Powell, G. Qiao Greg, Polymeric CO2/N2 gas separation
membranes for the capture of carbon dioxide from power plant
flue gases, J. Membr. Sci., 279 (2006) 1–49.
- E. Biernacka, T. Suchecka, Membrane Technologies in the
Environmental Protection, Wydawnictwo SGGW, Warszawa,
2004 (in Polish).
- S. Dushyant, D.R. Luebke, H.W. Pennline, A Review of Carbon
Dioxide Selective Membranes. A Topical Report, National
Energy Technology Laboratory, United States Department of
Energy, 2003.
- J. Marano, J. Ciferino, Integration of gas separation membranes
with IGCC identifying the right membrane for the right Job,
Energy Procedia, 1 (2008) 361–368.
- S. Yan, M. Fang, W. Zhang, W. Zhong, Z. Luo, K. Cen, Comparative
analysis of CO2 separation from flue gas by membrane
gas absorption technology and chemical absorption technology
in China, Energy Convers. Manage., 49 (2008) 3188–3197.
- L. Zhao, R. Menzer, E. Riensche, L. Blum, D. Stolten, , Concepts
and investment cost analyses of multi-stage membrane systems
used in post-combustion processes, Energy Procedia, 1 (2009)
269–278.
- M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel,
A.G. Chmielewski, Applications of polyimide membranes
for biogas purification and enrichment, J. Hazard. Mater., 144
(2007) 698–702.
- J. Davidson, K. Thambimuthu, Technologies for Capture of
Carbon Dioxide, Proceedings of the Seventh Greenhouse Gas
Technology Conference, Vancouver, Canada, International
Energy Association (IEA), Greenhouse Gas R&D Programme,
2004.
- K. Janusz-Szymańska, A. Dryjańska, Possibilities for improving
the thermodynamic and economic characteristics of an oxytype
power plant with a cryogenic air separation unit, Energy,
85 (2015) 45–61.
- R. Abdulrahman, I. Sebastine, Natural gas dehydration process
simulation and optimization: a case study of Khurmala Field
in Iraqi Kurdistan Region, World Academy of Science, Eng.
Technol., 78 (2013) 469–472.
- M. Pronobis, Modernization of Power Boilers, WNT, Warszawa,
2002 (in Polish).
- R.W. Baker, K. Lokhandwala, Natural gas processing with
membranes: an overview, Ind. Eng. Chem. Res., 47 (2008)
2109–2121.
- T.S. Chung, L. Ying Jiang, Y. Lia, S. Kulprathipanja, Mixed
matrix membranes (MMMs) comprising organic polymers with
dispersed inorganic fillers for gas separation, Prog. Polym. Sci.,
32 (2007) 483–507.
- H. Feng, H. Zhang, L. Xu, Polymeric membranes for natural gas
conditioning, Energy Sources Part A, 29 (2007) 1269–1278.
- C.V. Funk, D.R. Lioyd, Zeolite-filled microporous mixed
matrix membranes: prediction of gas separation performance,
J. Membr. Sci., 313 (2008) 224–231.
- M. Netusil, P. Ditl, Comparison of methods for dehydration of
natural gas stored in underground gas storages, Inż. Ap. Chem.,
49 (2010) 87–88.
- H. Sijbesema, K. Nymeijer, R. Marwijk, R. Heijboer, J. Potreck,
M. Wessling, Flue gas dehydration using polymer membranes,
J. Membr. Sci., 313 (2008) 263–276.
- D. Bergmair, S.J. Metz., H.C. de Lange, A.A. van Steenhoven,
System analysis of membrane facilitated water generation from
air humidity, Desalination, 339 (2014) 26–33.
- M. Kasperkowiak, J. Kołodziejek, B. Strzemiecka, A. Voelkel,
Effect of impregnating agent and relative humidity on
surface characteristics of sorbents determined by inverse gas
chromatography, J. Chromatogr. A, 1288 (2013) 101–104.
- K.-J. Huang, S.-J. Hwang, W.-H. Lai, The influence of
humidification and temperature differences between inlet
gases on water transport through the membrane of a proton
exchange membrane fuel cell, J. Power Sources, 284 (2015)
77–85.
- Q.-f. Jian, G.-q. Ma, X.-l. Qiu, Influences of gas relative humidity
on the temperature of membrane in PEMFC with interdigitated
flow field, Renewable Energy, 62 (2014) 129–136.
- M. Giacinti Baschetti, M. Minelli, J. Catalano, G.C. Sarti, Gas
permeation in perflurosulfonated membranes: influence of
temperature and relative humidity, Int. J. Hydrogen Energy, 38
(2013) 11973–11982.
- M.A. Díaz, A. Iranzo, F. Rosa, F. Isorna, E. Lopez, J.P. Bolivar,
Effect of carbon dioxide on the contamination of low temperature
and high temperature PEM (polymer electrolyte membrane)
fuel cells. Influence of temperature, relative humidity and
analysis of regeneration processes, Energy, 90 (2015) 299–309.
- J.R. Pauls, D. Fritsch, T. Klassen, K.-V. Peinemann, Gas
permeation measurement under defined humidity via constant
volume/variable pressure method, J. Membr. Sci., 389 (2012)
343–348.
- S. Naudy, F. Collette, F. Thominette, G. Gebel, E. Espuche,
Influence of hygrothermal aging on the gas and water transport
properties of Nafion® membranes, J. Membr. Sci., 451 (2014)
293–304.
- L. Ansaloni, M. Minelli, M. Giacinti Baschetti, G.C. Sarti, Effect
of relative humidity and temperature on gas transport in
Matrimid®: experimental study and modeling, J. Membr. Sci.,
471 (2014) 392–401.
- S. Vengatesan, K. Panha, M.W. Fowler, X.-Z. Yuan, H. Wang,
Membrane electrode assembly degradation under idle
conditions via unsymmetrical reactant relative humidity
cycling, J. Power Sources, 207 (2012) 101–110.