References

  1. Climate Change 2014: Synthesis Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2015.
  2. Energy and Climate Change, World Energy Outlook Special Report, International Energy Agency, 2015.
  3. K. Badyda, A. Miller, Energetyczne turbiny gazowe oraz układy z ich wykorzystaniem, Kaprint, Lublin, 2014. [in Polish]
  4. T. Chmielniak, A. Rusin, K. Czwiertnia, Turbiny gazowe, Ossolineum, Wrocław, 2001. [in Polish]
  5. J. Kotowicz, Elektrownie gazowo-parowe, Kaprint, Lublin, 2008. [in Polish]
  6. E. Yantovsky, J. Górski, M. Shokotov, Zero Emissions Power Cycles, CRC Press, Boca Raton, FL, 2009.
  7. L. Zheng, Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture, Woodhead Publishing Limited, Cambridge, UK, 2011.
  8. J. Tranier, R. Dubettier, A. Darde, N. Perrin, Air Separation, flue gas compression and purification units for oxy-coal combustion systems, Energy Procedia, 4 (2011) 966–971.
  9. A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, M. Job, Thermodynamic and economic analysis of the different variants of a coal-fired, 460MW power plant using oxy-combustion technology, Energy Convers. Manage., 76 (2013) 109–120.
  10. M. Job, Ł. Bartela, A. Skorek-Osikowska, Analysis of the use of waste heat in an oxy-combustion power plant to replace steam cycle heat regeneration, J. Power Technol., 93 (2013) 133–141.
  11. A.R. Smith, J. Klosek, A review of air separation technologies and their integration with energy conversion process, Fuel Process. Technol., 70 (2001) 115–134.
  12. J. Kotowicz, A. Balicki, Enhancing the overall efficiency of a lignite-fired oxyfuel power plant with CFB boiler and membrane-based air separation unit, Energy Convers. Manage., 80 (2014) 20–31.
  13. J. Kotowicz, S. Michalski, Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation, Energy, 64 (2014) 109–119.
  14. K. Janusz-Szymańska, O. Dryjańska, Possibilities for improving the thermodynamic and economic characteristics of an oxytype power plant with a cryogenic air separation unit, Energy, 85 (2015) 45–61.
  15. S. Berdowska, A. Skorek-Osikowska, Technology of oxygen production in the membrane-cryogenic air separation system for a 600 MW oxy-type pulverized bed boiler, Arch. Thermodyn., 33 (2012) 65–76.
  16. S.M. Hashim, A.R. Mohamed, S. Bhatia, Current status of ceramic-based membranes for oxygen separation from air, Adv. Colloid Interface Sci., 160 (2010) 88–100.
  17. M.A. Habib, M.A. Nemitallah, Design of an ion transport membrane reactor for application in fire tube boilers, Energy, 81 (2015) 787–801.
  18. J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, J.C. Diniz da Costa, Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 320 (2008) 13–41.
  19. M.D. Mancini, A. Mitsos, Ion transport membrane reactors for oxy-combustion - part I: intermediate-fidelity modeling, Energy, 36 (2011) 4701–4720.
  20. F. Selimovic, Computational Analysis and Modeling Techniques for Monolithic Membrane Reactors Related to CO2 Free Power Processes, Doctoral Thesis, Lund University, Lund, Sweden, 2007.
  21. K. Foy, J. McGovern, Comparison of Ion Transport Membranes, Proceedings of Fourth Annual Conference on Carbon Capture and Sequestration DOE/NETL, Alexandria, USA, 2005.
  22. H. Lu, Y. Cong, W.S. Yang, Oxygen permeability and stability of Ba0.5Sr0.5Co0.8Fe0.2O3 as an oxygen-permeable membrane at high pressures, Solid State Ionics, 177 (2006) 595–600.
  23. M.A. Nemitallah, M.A. Habib, K. Megzhani, Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor, Energy, 84 (2015) 600–611.
  24. S. Baumann, J.M. Serra, M.P. Lobera, S. Escolástico, F. Schulze-Küppers, W.A. Meulenbenrg, Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes, J. Membr. Sci., 377 (2011) 198–205.
  25. S.G. Sundkvist, S. Julsrud, B. Vigeland, T. Naas, M. Budd, H. Leistner, D. Winkler, Development and testing of AZEP reactor components, Int. J. Greenhouse Gas Control, 1 (2007) 180–187.
  26. B.F. Möller, T. Torisson, M. Assadi, AZEP Gas Turbine Combined Cycle Power Plants - Thermo-economic Analysis, Intern. J. Thermodyn., 9 (2006) 21–28.
  27. H.M. Kvamsdal, K. Jordal, O. Bolland, A quantitive comparison of gas turbine cycles with CO2 capture, Energy, 32 (2007) 10–24.
  28. F. Petrakopoulou, G. Tsatsaronis, A. Boyano, T. Morosuk, Exergoeconomic and exergoenvironmental evaluation of power plants including CO2 capture, Chem. Eng. Res. Design, 89 (2011) 1461–1469.
  29. M.A. Habib, P. Ahmed, R. Ben-Mansour, H.M. Badr, P. Kirchen, A.F. Ghoniem, Modeling of a combined ion transport and porous membrane reactor for oxy-combustion, J. Membr. Sci., 446 (2013) 230–243.
  30. S. Gunasekaran, N.D. Mancini, A. Mitsos, Optimal design and operation of membrane-based oxy-combustion power plants, Energy, 70 (2014) 338–354.
  31. Gate Cycle Version 5.40. Manual, GE Enter Software, LLC.
  32. J. Kotowicz, M. Job, M. Brzęczek, The characteristics of ultramodern combined cycle power plants, Energy, 92 (2015) 197–211.
  33. J. Kotowicz, M. Brzęczek, M. Job, The influence of carbon capture and compression unit on the characteristics of ultramodern combined cycle power plant, Int. J. Global Warming, 12 (2017) 164–187.
  34. J. Kotowicz, Ł. Bartela, The influence of economic parameters on the optimal values of the design variables of a combined cycle plant, Energy, 35 (2010) 911–919.
  35. E. Yantovsky, J. Górski, B. Smyth, J. ten Elshof, Zero-emission fuel-fired power plants with ion transport membrane, Energy, 29 (2004) 2077–2088.
  36. J. Kotowicz, M. Job, Modeling a membrane reactor for a zeroemission combined cycle power plant, J. Power Technol., 97 (2017) 7–14.
  37. M. Job, Modelowanie i analiza zaawansowanych technologicznie zeroemisyjnych elektrowni gazowo-parowych ze spalaniem tlenowym, Politechnika Śląska, Gliwice, 2017. [in Polish]
  38. J. Kotowicz, M. Job, Porównanie termodynamiczne zeroemisyjnych elektrowni gazowo - parowych ze spalaniem tlenowym, Rynek Energii, 6 (2016) 36–42. [in Polish].