References
- Climate Change 2014: Synthesis Report, Intergovernmental
Panel on Climate Change, Geneva, Switzerland, 2015.
- Energy and Climate Change, World Energy Outlook Special
Report, International Energy Agency, 2015.
- K. Badyda, A. Miller, Energetyczne turbiny gazowe oraz układy
z ich wykorzystaniem, Kaprint, Lublin, 2014. [in Polish]
- T. Chmielniak, A. Rusin, K. Czwiertnia, Turbiny gazowe,
Ossolineum, Wrocław, 2001. [in Polish]
- J. Kotowicz, Elektrownie gazowo-parowe, Kaprint, Lublin,
2008. [in Polish]
- E. Yantovsky, J. Górski, M. Shokotov, Zero Emissions Power
Cycles, CRC Press, Boca Raton, FL, 2009.
- L. Zheng, Oxy-fuel combustion for power generation and
carbon dioxide (CO2) capture, Woodhead Publishing Limited,
Cambridge, UK, 2011.
- J. Tranier, R. Dubettier, A. Darde, N. Perrin, Air Separation, flue
gas compression and purification units for oxy-coal combustion
systems, Energy Procedia, 4 (2011) 966–971.
- A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, M. Job,
Thermodynamic and economic analysis of the different variants
of a coal-fired, 460MW power plant using oxy-combustion
technology, Energy Convers. Manage., 76 (2013) 109–120.
- M. Job, Ł. Bartela, A. Skorek-Osikowska, Analysis of the use of
waste heat in an oxy-combustion power plant to replace steam
cycle heat regeneration, J. Power Technol., 93 (2013) 133–141.
- A.R. Smith, J. Klosek, A review of air separation technologies
and their integration with energy conversion process, Fuel
Process. Technol., 70 (2001) 115–134.
- J. Kotowicz, A. Balicki, Enhancing the overall efficiency
of a lignite-fired oxyfuel power plant with CFB boiler and
membrane-based air separation unit, Energy Convers. Manage.,
80 (2014) 20–31.
- J. Kotowicz, S. Michalski, Efficiency analysis of a hard-coal-fired
supercritical power plant with a four-end high-temperature
membrane for air separation, Energy, 64 (2014) 109–119.
- K. Janusz-Szymańska, O. Dryjańska, Possibilities for improving
the thermodynamic and economic characteristics of an oxytype
power plant with a cryogenic air separation unit, Energy,
85 (2015) 45–61.
- S. Berdowska, A. Skorek-Osikowska, Technology of oxygen
production in the membrane-cryogenic air separation system for
a 600 MW oxy-type pulverized bed boiler, Arch. Thermodyn.,
33 (2012) 65–76.
- S.M. Hashim, A.R. Mohamed, S. Bhatia, Current status of
ceramic-based membranes for oxygen separation from air, Adv.
Colloid Interface Sci., 160 (2010) 88–100.
- M.A. Habib, M.A. Nemitallah, Design of an ion transport
membrane reactor for application in fire tube boilers, Energy,
81 (2015) 787–801.
- J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu,
Y.S. Lin, J.C. Diniz da Costa, Mixed ionic–electronic conducting
(MIEC) ceramic-based membranes for oxygen separation,
J. Membr. Sci., 320 (2008) 13–41.
- M.D. Mancini, A. Mitsos, Ion transport membrane reactors
for oxy-combustion - part I: intermediate-fidelity modeling,
Energy, 36 (2011) 4701–4720.
- F. Selimovic, Computational Analysis and Modeling Techniques
for Monolithic Membrane Reactors Related to CO2 Free Power
Processes, Doctoral Thesis, Lund University, Lund, Sweden,
2007.
- K. Foy, J. McGovern, Comparison of Ion Transport Membranes,
Proceedings of Fourth Annual Conference on Carbon Capture
and Sequestration DOE/NETL, Alexandria, USA, 2005.
- H. Lu, Y. Cong, W.S. Yang, Oxygen permeability and stability of
Ba0.5Sr0.5Co0.8Fe0.2O3 as an oxygen-permeable membrane
at high pressures, Solid State Ionics, 177 (2006) 595–600.
- M.A. Nemitallah, M.A. Habib, K. Megzhani, Experimental and
numerical study of oxygen separation and oxy-combustion
characteristics inside a button-cell LNO-ITM reactor, Energy,
84 (2015) 600–611.
- S. Baumann, J.M. Serra, M.P. Lobera, S. Escolástico, F. Schulze-Küppers, W.A. Meulenbenrg, Ultrahigh oxygen permeation
flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes,
J. Membr. Sci., 377 (2011) 198–205.
- S.G. Sundkvist, S. Julsrud, B. Vigeland, T. Naas, M. Budd,
H. Leistner, D. Winkler, Development and testing of AZEP
reactor components, Int. J. Greenhouse Gas Control, 1 (2007)
180–187.
- B.F. Möller, T. Torisson, M. Assadi, AZEP Gas Turbine
Combined Cycle Power Plants - Thermo-economic Analysis,
Intern. J. Thermodyn., 9 (2006) 21–28.
- H.M. Kvamsdal, K. Jordal, O. Bolland, A quantitive comparison
of gas turbine cycles with CO2 capture, Energy, 32 (2007) 10–24.
- F. Petrakopoulou, G. Tsatsaronis, A. Boyano, T. Morosuk,
Exergoeconomic and exergoenvironmental evaluation of power
plants including CO2 capture, Chem. Eng. Res. Design, 89 (2011)
1461–1469.
- M.A. Habib, P. Ahmed, R. Ben-Mansour, H.M. Badr, P. Kirchen,
A.F. Ghoniem, Modeling of a combined ion transport and
porous membrane reactor for oxy-combustion, J. Membr. Sci.,
446 (2013) 230–243.
- S. Gunasekaran, N.D. Mancini, A. Mitsos, Optimal design and
operation of membrane-based oxy-combustion power plants,
Energy, 70 (2014) 338–354.
- Gate Cycle Version 5.40. Manual, GE Enter Software, LLC.
- J. Kotowicz, M. Job, M. Brzęczek, The characteristics of
ultramodern combined cycle power plants, Energy, 92 (2015)
197–211.
- J. Kotowicz, M. Brzęczek, M. Job, The influence of carbon capture
and compression unit on the characteristics of ultramodern
combined cycle power plant, Int. J. Global Warming, 12 (2017)
164–187.
- J. Kotowicz, Ł. Bartela, The influence of economic parameters
on the optimal values of the design variables of a combined
cycle plant, Energy, 35 (2010) 911–919.
- E. Yantovsky, J. Górski, B. Smyth, J. ten Elshof, Zero-emission
fuel-fired power plants with ion transport membrane, Energy,
29 (2004) 2077–2088.
- J. Kotowicz, M. Job, Modeling a membrane reactor for a zeroemission
combined cycle power plant, J. Power Technol., 97
(2017) 7–14.
- M. Job, Modelowanie i analiza zaawansowanych technologicznie
zeroemisyjnych elektrowni gazowo-parowych ze spalaniem
tlenowym, Politechnika Śląska, Gliwice, 2017. [in Polish]
- J. Kotowicz, M. Job, Porównanie termodynamiczne
zeroemisyjnych elektrowni gazowo - parowych ze spalaniem
tlenowym, Rynek Energii, 6 (2016) 36–42. [in Polish].