References

  1. B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: structure, properties and performance relationship, Desalination, 326 (2013) 77–95.
  2. I. Cabasso, E. Klein, J.K. Smith, Polysulfone hollow fibers. I. Spinning and properties, J. Appl. Polym. Sci., 20 (1976) 2377–2394.
  3. K. Rodemann, E. Staude, Synthesis and characterization of affinity membranes made from polysulfone, J. Membr. Sci., 88 (1994) 271–278.
  4. H. Ohya, S. Shiki, H. Kawakami, Fabrication study of polysulfone hollow-fiber microfiltration membranes: optimal dope viscosity for nucleation and growth, J. Membr. Sci., 326 (2009) 293–302.
  5. D.S. Kim, J.S. Kang, Y.N. Lee, The influence of membrane surface properties on fouling in a membrane bioreactor for wastewater treatment, Sep. Sci. Technol., 39 (2005) 833–854.
  6. R.E. Unger, K. Peters, Q. Huang, A. Funk, D. Paul, C.J. Kirkpatrick, Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes, Biomaterials, 26 (2005) 3461–3469.
  7. A.J. Brown, N.A. Brunelli, K. Eum, F. Rashidi, J.R. Johnson, W.J. Koros, C.W. Jones, S. Nair, Interfacial microfluidic processing of metal-organic framework hollow fiber membranes, Science, 345 (2014) 72–75.
  8. L.M. Flendrig, A.A. te Velde, A.F.M. Chamuleau, Semipermeable hollow fiber membranes in hepatocyte bioreactors: a prerequisite for a successful bioartificial liver? Artif. Organs, 21 (1997) 1177–1181.
  9. R.E. Unger, Q. Huang, K. Peters, D. Protzer, D. Paul, C.J. Kirkpatrick, Growth of human cells on polyethersulfone (PES) hollow fiber membranes, Biomaterials, 26 (2005) 1877–1884.
  10. J.M. Schakenraad, J.A. Oosterbaan, P. Nieuwenhuis, I. Molenaar, J. Olijslager, W. Portman, M.J.D. Eenink, F. Feijen, Biodegradable hollow fibres for the controlled release of drugs, Biomaterials, 9 (1988) 116–120.
  11. C. Charcosset, Z. Su, S. Karoor, G. Daun, C.K. Colton, Protein A immunoaffinity hollow fiber membranes for immunoglobulin G purification: experimental characterization, Biotechnol. Bioeng., 48 (1995) 415–427.
  12. H.J. Eash, H.M. Jones, B.G. Hattler, W.J. Federspiel, Evaluation of plasma resistant hollow fiber membranes for artificial lungs, ASAIO J., 50 (2004) 491–497.
  13. S.H. Ye, J. Watanabe, Y. Iwasaki, K. Ishihara, In situ modification on cellulose acetate hollow fiber membrane modified with phospholipid polymer for biomedical application, J. Membr. Sci., 249 (2005) 133–141.
  14. S. Luque, H. Mallubhotla, G. Gehlert, R. Kuriyel, S. Dzengeleski, S. Pearl, G. Belfort, A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology, Biotechnol. Bioeng., 65 (1999) 247–257.
  15. K. Saito, Charged polymer brush grafted onto porous hollow-fiber membrane improves separation and reaction in biotechnology, Sep. Sci. Technol., 37 (2002) 535–554.
  16. S.P. Hong, T.H. Bae, T.M. Tak, S. Hong, A. Randall, Fouling control in activated sludge submerged hollow fiber membrane bioreactor, Desalination, 143 (2002) 219–228.
  17. L.Y. Yu, Z.-L. Xu, H.-M. Shen, H. Yang, Preparation and characterization of PFDF-SiO2 composite hollow fiber membrane by sol-gel method, J. Membr. Sci., 337 (2009) 257–265.
  18. Y. Hu, Z. Lü, C. Wei, S. Yu, M. Liu, C. Gao, Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth, J. Membr. Sci., 545 (2018) 250–258.
  19. X. Zhao, Y. Su, W. Chen, J. Peng, Z. Jiang, Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property, J. Membr. Sci., 415–416 (2012) 824–834.
  20. N.L. Le, M. Ulbricht, S.P. Nunes, How do polyethylene glycol and poly(sulfobetaine) hydrogel layers on ultrafiltration membranes minimize fouling and stay stable in cleaning chemicals? Ind. Eng. Chem. Res., 56 (2017) 6785–6795.
  21. S. Belfer, Modification of ultrafiltration polyacrylonitrile membranes by sequential grafting of oppositely charged monomers: pH-dependent behavior of the modified membranes, React. Funct. Polym., 54 (2003) 155–165.
  22. Y. Xie, S.-S. Li, X. Jiang, T. Xiang, R. Wang, C.-S. Zhao, Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility, J. Colloid Interface Sci., 443 (2015) 36–44.
  23. J.H. Kim, K.H. Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr. Sci., 138 (1998) 153–163.
  24. Y.-F. Zhao, L.-P. Zhu, Z. Yi, B.-K. Zhu, Y.-Y. Xu, Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer, J. Membr. Sci., 440 (2013) 40–47.
  25. F. Pan, H. Jia, Z. Jiang, X. Zheng, J. Wang, L. Cui, P(AAAMPS)-PVA/polysulfone composite hollow fiber membranes for propylene dehumidification, J. Membr. Sci., 323 (2008) 395–403.
  26. Y. Wan, H. Wu, A. Yu, D. Wen, Biodegradable polylactide/chitosan blend membranes, Biomacromolecules, 7 (2006) 1362–1372.
  27. C. Wang, K.-W. Yan, Y.-D. Lin, P.C.H. Hsieh, Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release, Macromolecules, 43 (2010) 6389–6397.
  28. U.H. Khan, Z. Khan, I.H. Aljundi, Improved hydrophilicity and anti-fouling properties of polyamide TFN membrane comprising carbide derived carbon, Desalination, 420 (2017) 125–135.
  29. P. Aerts, I. Genne, S. Kuypers, R. Leysen, I.F.J. Vankelocom, P.A. Jacobs, Polysulfone-aerosil composite membranes: Part 2. The influence of the addition of aerosol on the skin characteristics and membrane properties, J. Membr. Sci., 178 (2000) 1–11.
  30. S.H. Yoo, Y.H. Kim, Y.H. Yho, J. Won, Y.S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight, J. Membr. Sci., 236 (2004) 203–207.
  31. B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive, J. Membr. Sci., 315 (2008) 36–47.
  32. R. Mahendran, R. Malaisamy, D.R. Mohan, Cellulose acetate and polyethersulfone blend ultrafiltration membranes. Part I: preparation and characterizations, Polym. Adv. Technol., 15 (2004) 149–157.
  33. C. Wojciechowski, A. Chwojnowski, L. Granicka, E. Łukowska, Polysulfone/cellulose acetate blend semi degradable capillary membranes preparation and characterization, Desal. Wat. Treat., 64 (2017) 365–371.
  34. C. Wojciechowski, A. Chwojnowski, L. Granicka, E. Łukowska, M. Grzeczkowicz, Polysulfone/polyurethane blend degradable hollow fiber membranes preparation and transport-separation properties evaluation, Desal. Wat. Treat., 57 (2016) 22191–22199.
  35. M. Przytulska, A. Kruk, J.L. Kulikowski, C. Wojciechowski, A. Gadomska-Gajadhur, A. Chwojnowski, Comparative assessment of polyvinylpyrrolidone type of membranes based on porosity analysis, Desal. Wat. Treat., 75 (2017) 18–25.
  36. M. Przytulska, J.L. Kulikowski, M. Wasyłeczko, A. Chwojnowski, D. Piętka, The evaluation of 3D morphological structure of porous membranes based on a computer-aided analysis of their 2D images, Desal. Wat. Treat. (2018) 1–9, doi:10.5004/dwt.2018.22569.