References
- J.V. Alexander, J.W. Neely, E.A. Grulke, Effect of chemical
functionalization on the mechanical properties of polypropylene
hollow fiber membranes, J. Polym. Sci. Part B Polym. Phys., 52
(2014) 1366–1373.
- H.A. Balasubramanian-Rauckhorst, D.R. Lloyd, G.G. Lipscomb,
Predicting extent of anisotropy in anisotropic hollow fiber
membrane formation, J. Membr. Sci., 339 (2009) 250–260.
- W. Yave, R. Quijada, M. Ulbricht, R. Benavente, Syndiotactic
polypropylene as potential material for the preparation of
porous membranes via thermally induced phase separation
(TIPS) process, Polymer, 46 (2005) 11582–11590.
- C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent
progresses in polymeric hollow fiber membrane preparation,
characterization and applications, Sep. Purif. Technol., 111
(2013) 43–71.
- B. Luo, Z. Li, J. Zhang, X. Wang, Formation of anisotropic
microporous isotactic polypropylene (iPP) membrane via
thermally induced phase separation, Desalination, 233 (2008)
19–31.
- H.Q. Liang, Q.Y. Wu, L.S. Wan, X.J. Huang, Z.K. Xu, Polar
polymer membranes via thermally induced phase separation
using a universal crystallizable diluent, J. Membr. Sci., 446
(2013) 482–491.
- M.E. Vanegas, R. Quijada, D. Serafini, Microporous membranes
prepared via thermally induced phase separation from
metallocenic syndiotactic polypropylenes, Polymer, 50 (2009)
2081–2086.
- H. Matsuyama, M.-m. Kim, D.R. Lloyd, Effect of extraction
and drying on the structure of microporous polyethylene
membranes prepared via thermally induced phase separation,
J. Membr. Sci., 204 (2002) 413–419.
- Q.Y. Wu, L.S. Wan, Z.K. Xu, Structure and performance of
polyacrylonitrile membranes prepared via thermally induced
phase separation, J. Membr. Sci., 409–410 (2012) 355–364.
- Z. Gou, A.J. McHugh, A comparison of Newtonian and
viscoelastic constitutive models for dry spinning of polymer
fibers, J. Appl. Polym. Sci., 87 (2003) 2136–2145.
- N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G.
Lipscomb, T.-S. Chung, J.-Y. Lai, Evolution of polymeric hollow
fibers as sustainable technologies: past, present, and future,
Prog. Polym. Sci., 37 (2012) 1401–1424.
- T.S. Chung, Z.L. Xu, W. Lin, Fundamental understanding of
the effect of air-gap distance on the fabrication of hollow fiber
membranes, J. Appl. Polym. Sci., 72 (1999) 379–395.
- V. Simon, The temperature of fibers during air-gap wetspinning:
cooling by convection and evaporation, Int. J. Heat
Mass Trans., 37 (1994) 1133–1142.
- T.S. Chung, The limitations of using Flory-Huggins equation
for the states of solutions during asymmetric hollow-fiber
formation, J. Membr. Sci., 126 (1997) 19–34.
- J. Yin, N. Coutris, Y. Huang, Role of Marangoni instability
in fabrication of axially and internally grooved hollow fiber
membranes, Langmuir, 26 (2010) 16991–16999.
- H. Wu, L. Li, P. Li, Q. Yin, H. Chang, Effects of air-cooling on
skin cells of hollow-fiber membranes prepared via thermally
induced phase separation, Polym. Eng. Sci., 55 (2015) 1661–1670.
- Y. Mino, T. Ishigami, Y. Kagawa, H. Matsuyama, Threedimensional
phase-field simulations of membrane porous
structure formation by thermally induced phase separation in
polymer solutions, J. Membr. Sci., 483 (2015) 104–111.
- H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto, D.R. Lloyd,
Structure control of anisotropic and asymmetric polypropylene
membrane prepared by thermally induced phase separation, J.
Membr. Sci., 179 (2000) 91–100.
- N. Widjojo, T.S. Chung, Thickness and air gap dependence of
macrovoid evolution in phase-inversion asymmetric hollow
fiber membranes, Ind. Eng. Chem. Res., 45 (2006) 7618–7626.
- S.J. Shilton, Forced convection spinning of hollow fibre
membranes: modelling of mass transfer in the dry gap, and
prediction of active layer thickness and depth of orientation,
Sep. Purif. Technol., 118 (2013) 620–626.
- V. Simon, Analysis of fiber formation during air-gap wet
spinning, AIChE J., 41 (1995) 1281–1294.
- T.S. Chung, X. Hu, Effect of air-gap distance on the morphology
and thermal properties of polyethersulfone hollow fibers, J.
Appl. Polym. Sci., 66 (1997) 1067–1077.
- G.G. Lipscomb, The melt hollow fiber spinning process: steadystate
behavior, sensitivity and stability, Polym. Adv. Technol., 5
(1994) 745–758.
- Z.S. Yang, Studies on Preparation and Morphology Controlling
of iPP Hollow Fiber Microporous Membrane via Thermally
Induced Phase Separation, Tianjin University, 2005.
- Y.K. Lin, G. Chen, J. Yang, X.L. Wang, Formation of isotactic
polypropylene membranes with bicontinuous structure and
good strength via thermally induced phase separation method,
Desalination, 236 (2009) 8–15.
- S. Kase, T. Matsuo, Studies on melt spinning. II. Steady-state and
transient solutions of fundamental equations compared with
experimental results, J. Appl. Polym. Sci., 11 (1967) 251–287.
- O. Ishizuka, K. Koyama, Crystallization of running filament in
melt spinning of polypropylene, Polymer, 18 (1977) 913–918.
- W.L. Chou, M.C. Yang, Effect of take-up speed on physical
properties and permeation performance of cellulose acetate
hollow fibers, J. Membr. Sci., 250 (2005) 259–267.
- H. Matsuyama, T. Maki, M. Teramoto, K. Asano, Effect of
polypropylene molecular weight on porous membrane
formation by thermally induced phase separation, J. Membr.
Sci., 204 (2002) 323–328.
- O. Miyawaki, A. Saito, T. Matsuo, K. Nakamura, Activity
and activity coefficient of water in aqueous solutions and
their relationships with solution structure parameters, Biosci.
Biotechnol. Biochem., 61 (1997) 466–469.