References

  1. S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges. J. Membr. Sci., 396 (2012) 1–21.
  2. N. Joseph, P. Ahmadian, R. Hoogenboom, I. Vankelecom, Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation, Polym. Chem., 5 (2014) 1817–1831.
  3. A.F. Ismail, W.J. Lau, A.F. Ismail, Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection, Desalination, 330 (2013) 90–99.
  4. X. Liu, H.Y. Ng, Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thinfilm composite forward osmosis membrane, J. Membr. Sci., 481 (2015) 148–163.
  5. M.A.M. Yusof, M.N. Abu Seman, N. Hilal, Development of polyamide forward osmosis membrane for humic acid removal, Desal. Wat. Treat., 57 (2016) 29113–29117.
  6. K.Y. Wang, T.S. Chung, G. Amy, Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization, AIChE J., 58 (2012) 770–781.
  7. R. Revanur, I. Roh, J.E. Klare, A. Noy, O. Bakajin, Thin Film Composite Membranes for Forward Osmosis, and Their Preparation Methods, 2014, Google Patents.
  8. A. Tiraferri, N.Y. Yip, A.P. Straub, S.R.-V. Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci., 444 (2013) 523–538.
  9. J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, J. Membr. Sci., 278 (2006) 114–123.
  10. X. Liu, H.Y. Ng, Double-blade casting technique for optimizing substrate membrane in thin-film composite forward osmosis membrane fabrication, J. Membr. Sci., 469 (2014) 112–126.
  11. D. Emadzadeh, W.J. Lau, T. Matsuura, A.F. Ismail, M. Rahbari-Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, J. Membr. Sci., 449 (2014) 74–85.
  12. D. Stillman, L. Krupp, Y.-H. La, Mesh-reinforced thin film composite membranes for forward osmosis applications: the structure–performance relationship, J. Membr. Sci., 468 (2014) 308–316.
  13. T.Y. Cath, M. Elimelech, J.R. McCutcheon, R.L. McGinnis, A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I.V. Farr, N.T. Hancock, J. Lampi, L.D. Nghiem, M. Xie, N.Y. Yip, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination, 312 (2013) 31–38.
  14. Y. Wang, R. Ou, H. Wang, T. Xu, Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane, J. Membr. Sci., 475 (2015) 281–289.
  15. R.C. Ong, T.-S. Chung, J.S. de Wit, B.J. Helmer, Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 473 (2015) 63–71.
  16. B. Kim, G. Gwak, S. Hong, Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S), Desalination, 422 (2017) 5–16.
  17. C. Liu, J. Lee, C. Small, J. Ma, M. Elimelech, Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes, J. Membr. Sci., 544 (2017) 135–142.
  18. J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
  19. W.A. Phillip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44 (2010) 5170–5176.
  20. N.-N. Bui, J.T. Arena, J.R. McCutcheon, Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter, J. Membr. Sci., 492 (2015) 289–302.
  21. M. Gruber, C.J. Johnson, C.Y. Tang, M.H. Jensen, L. Yde, C.H. Nielsen, Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems, J. Membr. Sci., 379 (2011) 488–495.
  22. J. Heikkinen, H. Kyllönen, E. Järvelä, A. Grönroos, C.Y. Tang, Ultrasound-assisted forward osmosis for mitigating internal concentration polarization, J. Membr. Sci., 528 (2017) 147–154.
  23. S. Subramani, R.C. Panda, B. Panda, Studies on performances of membrane, draw solute and modeling of forward osmosis process in desalination – a review, Desal. Wat. Treat., 70 (2017) 46–63.
  24. K. Lee, R. Baker, H. Lonsdale, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8 (1981) 141–171.
  25. P. Hajighahremanzadeh, M. Abbaszadeh, S.A. Mousavi, M. Soltanieh, H. Bakhshi, Polyamide/polyacrylonitrile thin film composites as forward osmosis membranes, J. Appl. Polym. Sci., 133 (2016) 44130.
  26. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  27. S.J. Zaidi, F. Fadhillah, Application of Multilayer Thin Film Technology in Desalination Membrane, in Desalination, InTech, London, UK, 2017.
  28. A. Zirehpour, A. Rahimpour, S. Khoshhal, M.D. Firouzjaei, A.A. Ghoreyshi, The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes, RSC Adv., 6 (2016) 70174–70185.
  29. S.Y. Yeo, Y. Wang, T. Chilcott, A. Antony, H. Coster, G. Leslie, Characterising nanostructure functionality of a cellulose triacetate forward osmosis membrane using electrical impedance spectroscopy, J. Membr. Sci., 467 (2014) 292–302.
  30. Y.C. Kim, M. Elimelech, Adverse impact of feed channel spacers on the performance of pressure retarded osmosis, Environ. Sci. Technol., 46 (2012) 4673–4681.
  31. S.O. Alaswad, S. Al-aibi, E. Alpay, A. Sharif, Efficiency of organic draw solutions in a forward osmosis process using nanofiltration flat sheet membrane, J. Chem. Eng. Process Technol., 9 (2018) 1–10.
  32. N.T. Hancock, T.Y. Cath, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol., 43 (2009) 6769–6775.
  33. Y. Xu, X. Peng, C.Y. Tang, Q.S. Fu, S. Nie, Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module, J. Membr. Sci., 348 (2010) 298–309.
  34. S.S. Manickam, J.R. McCutcheon, Understanding mass transfer through asymmetric membranes during forward osmosis: a historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches, Desalination, 421 (2017) 110–126.
  35. K.M. Julie, Arias-Paic, Final Report 2015-01-7911 in Forward Osmosis Evaluation and Applications for Reclamation, U.S., Denver, CO, USA, 2015.
  36. C.Y. Tang, Q. She, W.C.L. Lay, R. Wang, A.G. Fane, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, J. Membr. Sci., 354 (2010) 123–133.
  37. G. Blandin, A.R.D. Verliefde, C.Y. Tang, A.E. Childress, P. Le-Clech, Validation of assisted forward osmosis (AFO) process: impact of hydraulic pressure, J. Membr. Sci., 447 (2013) 1–11.
  38. J. Wei, C. Qiu, C.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372 (2011) 292–302.
  39. J.T. Arena, S.S. Manickam, K.K. Reimund, B.D. Freeman, J.R. McCutcheon, Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes, Desalination, 343 (2014) 8–16.
  40. B. Kim, S. Lee, S. Hong, A novel analysis of reverse draw and feed solute fluxes in forward osmosis membrane process, Desalination, 352 (2014) 128–135.