References
- World Health Organization, Pharmaceuticals in Drinking
Water, 2012.
- T.A. Ternes, R. Roman Hirsch, J. Muller, K. Haberer, Methods
for the determination of neutral drugs as well as betablockers
and β2-sympathomimetics in aqueous matrices using GC/MS
and LC/MS/MS, J. Anal. Chem., 362 (1998) 329–340.
- J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón,
Aqueous heavy metals removal by adsorption on aminefunctionalized
mesoporous silica, J. Hazard. Mater., 163 (2009)
213–221.
- S. Jodeh, F. Abdelwahab, N. Jaradat, I. Warad, W. Jodeh,
Adsorption of diclofenac from aqueous solution using
Cyclamen persicum tubers based activated carbon (CTAC), J.
Assoc. Arab Univ. Basic Appl. Sci., 20 (2016) 32–38.
- G. Crini, P.M. Badot, Application of chitosan, a natural
aminopolysaccharide, for dye removal from aqueous solutions
by adsorption processes using batch studies: a review of recent
literature, Prog. Polym. Sci., 33 (2008) 399–447.
- S.K. Parida,S. Dash, S. Patel, B.K. Mishra, Adsorption of organic
molecules on silica surface, Adv. Colloid Interface Sci., 121
(2006) 77–110.
- K. Kuśmierek, M. Sankowska, A. Świątkowski, Kinetic
and equilibrium studies of simultaneous adsorption of
monochlorophenols and chlorophenoxy herbicides on activated
carbon, Desal. Wat. Treat., 52 (2014) 178–183.
- H. Nourmoradi, A. Ghiasvand, Z. Noorimotlagh, Removal of
methylene blue and acid orange 7 from aqueous solutions by
activated carbon coated with zinc oxide (ZnO) nanoparticles:
equilibrium, kinetic, and thermodynamic study, Desal. Wat.
Treat., 55 (2015) 252–262.
- V. Srivastava, D. Gusain, C.Y. Sharma, Synthesis, characterization
and application of zinc oxide nanoparticles (n-ZnO), Ceram.
Int., 39 (2013) 9803–9808.
- R. Salehi, M. Arami, N.M. Mahmoodi, Novel biocompatible
composite (chitosan–zinc oxide nanoparticle): preparation,
characterization and dye adsorption properties, Colloids Surf.,
B, 80 (2010) 86–93.
- D. Dutta, D. Thakur, D. Bahadur, SnO2 quantum dots decorated
silica nanoparticles for fast removal of cationic dye (methylene
blue) from wastewater, Chem. Eng. J., 281 (2015) 482–490.
- Z.-x. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal
of methyl orange from aqueous solution using bentonitesupported
nanoscale zero-valent iron, J. Colloid Interface Sci.,
363 (2011) 601–607.
- I.A. Rahman, V. Padavettan, Synthesis of silica nanoparticles
by sol-gel: size-dependent properties, surface modification,
and applications in silica-polymer nanocomposites-a review, J.
Nanomater., 2012 (2012) 1–15.
- M.N. Ravi Kumar, M. Sameti, S.S. Mohapatra, X. Kong, R.F.
Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt, C.M.
Lehr, Cationic silica nanoparticles as gene carriers: synthesis,
characterization and transfection efficiency in vitro and in vivo,
J. Nanosci. Nanotechnol., 4 (2004) 876–881.
- T. Suteewong, H. Sai, J. Lee, M. Bradbury, T. Hyeon, M. Sol, S.M.
Gruneref, U. Wiesne, Ordered mesoporous silica nanoparticles
with and without embedded iron oxide nanoparticles: structure
evolution during synthesis, J. Mater. Chem., 20 (2010) 7807–7814.
- T. Shahwan, C. Üzüm, A.E. Eroğlu, I. Lieberwirth, Synthesis
and characterization of bentonite/iron nanoparticles and their
application as adsorbent of cobalt ions, Appl. Clay Sci., 47
(2010) 257–262.
- C. Üzüm, T. Shahwan, A.E. Eroğlu, K.R. Hallam, T.B. Scott,
I. Lieberwirth, Synthesis and characterization of kaolinitesupported
zero-valent iron nanoparticles and their application
for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci.,
43 (2009) 172–181.
- Y.C. Sharma, V. Srivastava, C.H. Weng, S.N. Upadhyay, Removal
of Cr (VI) from wastewater by adsorption on iron nanoparticles,
Can. J. Chem. Eng., 87 (2009) 921–929.
- Y.C. Sharma, V. Srivastava, Comparative studies of removal
of Cr (VI) and Ni (II) from aqueous solutions by magnetic
nanoparticles, J. Chem. Eng. Data, 56 (2010) 819–825.
- D. Gusain, F. Bux, Y.C. Sharma, Abatement of chromium by
adsorption on nanocrystalline zirconia using response surface
methodology, J. Mol. Liq., 197 (2014) 131–141.
- Y.C. Sharma, V. Srivastava, Separation of Ni (II) ions from
aqueous solutions by magnetic nanoparticles, J. Chem. Eng.
Data, 55 (2009) 1441–1442.
- V. Srivastava, Y.C. Sharma, Synthesis and characterization of
Fe3O4@n-SiO2 nanoparticles from an agrowaste material and its
application for the removal of Cr(VI) from aqueous solutions,
Water Air Soil Pollut., 225 (2014) 1776.
- V. Srivastava, Y.C. Sharma, M. Sillanpää, Application of nanomagnesso
ferrite (n-MgFe2O4) for the removal of Co2+ ions from
synthetic wastewater: kinetic, equilibrium and thermodynamic
studies, Appl. Surf. Sci., 338 (2015) 42–54.
- V. Srivastava, Y.C. Sharma, M. Sillanpää, Response surface
methodological approach for the optimization of adsorption
process in the removal of Cr (VI) ions by Cu2(OH)2CO3
nanoparticles, Appl. Surf. Sci., 326 (2015) 257–270.
- S. Sulaiman, T. Shahwan, Mefenamic acid stability and removal
from wastewater using bentonite-supported nanoscale zerovalent
iron and activated charcoal, Desal. Wat. Treat., 97 (2017)
175–183.
- B.G. Trewyn, I.I. Slowing, S. Giri, H.-T. Chen, V.S.-Y. Lin,
Synthesis and functionalization of a mesoporous silica
nanoparticle based on the sol–gel process and applications in
controlled release, Acc. Chem. Res., 40 (2007) 846–853.
- X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H.
Li, Highly efficient removal of heavy metal ions by aminefunctionalized
mesoporous Fe3O4 nanoparticles, Chem. Eng. J.,
184 (2012) 132–140.
- A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni (II), Cd
(II), and Pb (II) from a ternary aqueous solution by amino
functionalized mesoporous and nano mesoporous silica, Chem.
Eng. J., 153 (2009) 70–79.
- H. Yoshitake, T. Yokoi, T. Tatsumi, Adsorption of chromate and
arsenate by amino-functionalized MCM-41 and SBA-1, Chem.
Mater., 14 (2002) 4603–4610.
- S. Hamoudi, R. Saad, K. Belkacemi, Adsorptive removal of
phosphate and nitrate anions from aqueous solutions using
ammonium-functionalized mesoporous silica, Ind. Eng. Chem.
Res., 46 (2007) 8806–8812.
- R. Saad, K. Belkacemi, S. Hamoudi, Adsorption of phosphate
and nitrate anions on ammonium-functionalized MCM-48:
effects of experimental conditions, J. Colloid. Interface Sci., 311
(2007) 375–381.
- X. Wang, P. Yifei, L. Muxin, L. Xiaoquan, D. Xinzhen, Highly
efficient adsorption of heavy metals from wastewaters by
graphene oxide-ordered mesoporous silica materials, J. Mater.
Sci., 50 (2015) 2113–2121.
- A.C. Johnson, D.J. Monika, J.W. Richard, K. Klaus, K. Andreas,
P.S. John, Do cytotoxic chemotherapy drugs discharged into
rivers pose a risk to the environment and human health? An
overview and UK case study, J. Hydrol., 348 (2008) 167–175.
- J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind,
D.G. Larsson, Contamination of surface, ground, and drinking
water from pharmaceutical production, Environ. Toxicol.
Chem., 28 (2009) 2522–2527.
- T. Pringsheim, W.J. Davenport, D. Dodick, Acute treatment and
prevention of menstrually related migraine headache evidencebased
review, Neurology, 70 (2008) 1555–1563.
- R.A. Moore, S. Derry, H.J. McQuay, Single dose oral mefenamic
acid for acute postoperative pain in adults. Status and date,
Cochrane Database Syst. Rev., 11 (2011) 1–28.
- P. Chen, F.L. Wang, K. Yao, J.S. Ma, F.H. Li, W.Y. Lv, G.G. Liu,
Phototransformation of mefenamic acid induced by nitrite
ions in water: mechanism, toxicity, and degradation pathways,
Environ. Sci. Pollut. Res., 22 (2015) 12585–12596.
- M. Suwalsky, M. Manrique-Moreno, J. Howe, P. Garidel, K.
Brandenburg, Molecular interactions of mefenamic acid with
lipid bilayers and red blood cells, J. Braz. Chem. Soc., 22 (2011)
2243–2249.
- M.J. Hilton, K.V. Thomas, Determination of selected human
pharmaceutical compounds in effluent and surface water
samples by high-performance liquid chromatography–electrospray tandem mass spectrometry, J. Chromatogr. A, 1015
(2003) 129–141.
- B. Soulet, A. Tauxe, J. Tarradellas, Analysis of acidic drugs in
Swiss wastewaters, Intern. J. Environ. Anal. Chem., 82 (2002)
659–667.
- X. Tang, T. Xiaosheng, S.G.C. Eugene, L. Ling, D. Jun, X. Junmin,
Synthesis of ZnO nanoparticles with tunable emission colors
and their cell labeling applications, J. Chem. Mater., 22 (2010)
3383–3388.
- M. Mazhdi, P. Hossein Khani, Structural characterization of
ZnO and ZnO: Mn nanoparticles prepared by reverse micelle
method, Intern. J. Nano Dimension, 2 (2012) 233–240.
- Q. Cai, Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen, F.-Z. Cui,
Dilute solution routes to various controllable morphologies of
MCM-41 silica with a basic medium, Chem. Mater., 13 (2001)
258–263.
- T. Suteewong, H. Sai, J. Lee, M. Bradbury, T. Hyeon, S.M.
Gurner, U. Wiesner, Ordered mesoporous silica nanoparticles
with and without embedded iron oxide nanoparticles: structure
evolution during synthesis, J. Mater. Chem., 20 (2010) 7807–7814.
- J.V.G. Tinio, V.G. Jessica, A. Simfroso, V.P. Dea Marie, T.C.
Rolando Jr., Influence of OH− ion concentration on the surface
morphology of ZnO-SiO2 nanostructure, J. Nanotechnol., 1
(2015) 1–7 (Available at: https://doi.org/10.1155/2015/686021).
- H. Faghihian, H. Nourmoradi, M. Shokouhi, Removal of copper
(II) and nickel (II) from aqueous media using silica aerogel
modified with amino propyl triethoxysilane as an adsorbent:
equilibrium, kinetic, and isotherms study, Desal. Wat. Treat., 52
(2014) 305–313.
- Y. Ho, G. McKay, A comparison of chemisorption kinetic models
applied to pollutant removal on various sorbents, Process Saf.
Environ., 76 (1998) 332–340.
- Y.-S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- H. Freundlich, Over the adsorption in solution, J. Phys. Chem,
57 (1906) 1100–1107.
- F. Haghseresht, G. Lu, Adsorption characteristics of phenolic
compounds onto coal-reject-derived adsorbents, Energy Fuels,
12 (1998) 1100–1107.
- K. Fytianos, E. Voudrias, E. Kokkalis, Sorption–desorption
behaviour of 2, 4-dichlorophenol by marine sediments,
Chemosphere, 40 (2000) 3–6.
- A.W. Adamson, A.P. Gast, Capillarity. Physical Chemistry
of Surfaces, 6th ed., John Wiley & Sons Inc, New York, 1990,
pp. 4–47.
- L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes,
N.A. Debacher, Adsorption characteristics of montmorillonite
clay modified with iron oxide with respect to methylene blue in
aqueous media, Appl. Clay Sci., 95 (2014) 25–31.