References
- E. de Guire, Shale gas recovery—engineering a big business,
Am. Ceram. Soc. Bull., 93 (2014) 27.
- J. Zawadzki, J. Bogacki, Smart magnetic markers use in
hydraulic fracturing, Chemosphere, 162 (2016) 23–30.
- PIG, Ocena zasobów wydobywalnych gazu ziemnego i ropy
naftowej w formacjach łupkowych dolnego paleozoiku w Polsce
(basen bałtycko – podlasko – lubelski), 2012 (in Polish). Available
at: https://www.pgi.gov.pl/docman-tree-all/aktualnosci-2012/zasoby-gazu/771-raport-pl/file.html (Accessed 03.10.2018).
- J.B. Curtis, Fractured shale-gas systems, AAPG Bull., 86 (2002)
1921–1938.
- F. Javadpour, D. Fisher, M. Unsworth, Nanoscale gas flow in
shale gas sediments, J. Can. Pet. Technol., 46 (2007) 55–61.
- M. Konieczyńska, M. Woźnicka, O. Antolak, R. Janica, G.
Lichtarski, M. Nidental, J. Otwinowski, A. Starzycka, B. Stec,
W. Grzegorz, Badania aspektów środowiskowych procesu
szczelinowania hydraulicznego wykonanego w otworze Łebień
LE-2H, Państwowy Instytut Geologiczny, Warszawa, 2011 (in
Polish).
- F. Liang, M. Sayed, G.A. Al-Muntasheri, F.F. Chang, L. Li, A
comprehensive review on proppant technologies, Petroleum,
2 (2015) 1–14.
- United States House of Representatives Committee on Energy
and Commerce Minority Staff, Chemicals Used in Hydraulic
Fracturing, 2011. Available at: http://www.conservation.ca.gov/dog/general_information/Documents/Hydraulic%20Fracturing%20Report%204%2018%2011.pdf (Accessed
03.10.2018).
- M.K. Camarillo, J.K. Domen, W.T. Stringfellow, Physicalchemical
evaluation of hydraulic fracturing chemicals in the
context of produced water treatment, J. Environ. Manage., 183
(2016) 164–174.
- I. Ferrer, E.M. Thurman, Chemical constituents and analytical
approaches for hydraulic fracturing waters, Trends Environ.
Anal. Chem., 5 (2015) 18–25.
- N. Shrestha, G. Chilkoor, J. Wilder, V. Gadhamshetty, J.J. Stone,
Potential water resource impacts of hydraulic fracturing from
unconventional oil production in the Bakken shale, Water Res.,
108 (2017) 1–24.
- W.T. Stringfellow, J.K. Domen, M.K. Camarillo, W.L. Sandelin,
S. Borglin, Physical, chemical, and biological characteristics of
compounds used in hydraulic fracturing, J. Hazard. Mater., 275
(2014) 37–54.
- J. Yuan, D. Luo, L. Feng, A review of the technical and economic
evaluation techniques for shale gas development, Appl. Energy,
148 (2015) 49–65.
- B. Saba, Potential treatment options for hydraulic fracturing
return fluids: a review, Chem. Bio. Eng. Rev., 1 (2014) 273–279.
- A. Kreuze, Ch. Schelly, E. Norman, To frack or not to frack:
perceptions of the risks and opportunities of high-volume
hydraulic fracturing in the United States, Energy Res. Social
Sci., 20 (2016) 45–54.
- C. Baranzelli, I. Vandecasteele, R.R. Barranco, I.M. Rivero,
N. Pelletier, O. Batelaan, C. Lavalle, Scenarios for shale gas
development and their related land use impacts in the Baltic
Basin, Northern Poland, Energy Policy, 84 (2015) 80–95.
- US EPA, Plan to Study the Potential Impacts of Hydraulic
Fracturing on Drinking Water Resources, US Environmental
Protection Agency, Office of Research and Development,
Washington D.C., USA, 2011.
- Q. Meng, Spatial analysis of environment and population at
risk of natural gas fracking in the state of Pennsylvania, USA,
Sci. Total Environ., 515–516 (2015) 198–206.
- L. Gandossi, An Overview of Hydraulic Fracturing and Other
Formation Stimulation Technologies for Shale Gas Production,
Report EUR 26347 EN, Institute for Energy and Transport,
European Commission, Luxembourg: European Union,
2013. doi: 10.2790/99937. Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/30129/1/an%20overview%20of%20hydraulic%20fracturing%20and%20other%20stimulation%20technologies%20%282%29.pdf
(Accessed dated 03.10.2018).
- A. Rogala, J. Krzysiek, M. Bernaciak, J. Hupka, Non aqueous
fracturing technologies for shale gas recovery, Physicochem.
Prob. Miner. Process., 49 (2013) 313–322.
- N. Mehta, F. O’ Sullivan, Water Management in Unconventional
Oil and Gas Development—The Issues and Their Optimization,
S. Ahuja, Ed., Food, Energy, and Water the Chemistry
Connection, Elsevier, 2015, pp. 217–241. doi: 10.1016/B978-0-12-800211-7.00008-9. Available at: https://www.sciencedirect.com/science/article/pii/B9780128002117000089 (Accessed
03.10.2018).
- A. Kowalik-Klimczak, M. Szwast, P. Gierycz, Membrane
processes in treatment of flowback fluid from hydraulic
fracturing of shale gas formations, Przem. Chem., 95 (2016)
948–952 (in Polish).
- A. Altaee, N. Hilal, Dual-stage forward osmosis/pressure
retarded osmosis process for hypersaline solutions and fracking
wastewater treatment, Desalination, 350 (2014) 79–85.
- G. Chen, Z. Wang, L.D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M.
Zhang, J. Song, T. He, Treatment of shale gas drilling flowback
fluids (SGDFs) by forward osmosis: membrane fouling and
mitigation, Desalination, 366 (2015) 113–120.
- K.L. Hickenbottom, N.T. Hancock, N.R. Hutchings, E.W.
Appleton, E.G. Beaudry, P. Xu, T.Y. Cath, Forward osmosis
treatment of drilling mud and fracturing wastewater from oil
and gas operations, Desalination, 312 (2013) 60–66.
- F.-X. Kong, J.-F. Chen, H.-M. Wang, X.-N. Liu, X.-M. Wang, X.
Wen, Ch.-M. Chen, Y.-F. Xie, Application of coagulation-UF
hybrid process for shale gas fracturing flowback water
recycling: performance and fouling analysis, J. Membr. Sci., 524
(2017) 460–469.
- S. Lee, Y.Ch. Kim, Calcium carbonate scaling by reverse draw
solute diffusion in a forward osmosis membrane for shale gas
wastewater treatment, J. Membr. Sci., 522 (2017) 257–266.
- D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri, T.
Hayes, D.R. Paul, B.D. Freeman, Fouling-resistant membranes
for the treatment of flowback water from hydraulic shale
fracturing: a pilot study, J. Membr. Sci., 437 (2013) 265–275.
- J.S. Rosenblum, K.A. Sitterley, E.M. Thurman, I. Ferrer,
K.G. Linden, Hydraulic fracturing wastewater treatment by
coagulation-adsorption for removal of organic compounds and
turbidity, J. Environ. Chem. Eng., 4 (2016) 1978–1984.
- H. Hao, X. Huang, C. Gao, X. Gao, Application of an integrated
system of coagulation and electrodialysis for treatment of
wastewater produced by fracturing, Desal. Wat. Treat., 55 (2015)
2034–2043.
- F.L. Lobo, H. Wang, T. Huggins, J. Rosenblum, K.G. Linden, Z.J.
Ren, Low-energy hydraulic fracturing wastewater treatment
via AC powered electrocoagulation with biochar, J. Hazard.
Mater., 309 (2016) 180–184.
- M.A. Sari, S. Chellam, Mechanisms of boron removal
from hydraulic fracturing wastewater by aluminum
electrocoagulation, J. Colloid Interface Sci., 458 (2015) 103–111.
- M. Peraki, E. Ghazanfari, G.F. Pinder, T.L. Harrington,
Electrodialysis: an application for the environmental protection
in shale-gas extraction, Sep. Purif. Technol., 161 (2016) 96–103.
- Y. Lester, Y. Ferrer, E.M. Thurman, K.A. Sitterley, J.A. Korak,
G. Aiken, K.G. Linden, Characterization of hydraulic fracturing
flowback water in Colorado: implications for water treatment,
Sci. Total Environ., 512–513 (2015) 637–644.
- Y. Liu, D. Wu, M. Chen, L. Ma, H. Wang, S. Wang, Wet
air oxidation of fracturing flowback fluids over promoted
bimetallic Cu-Cr catalyst, Catal. Commun., 90 (2017) 60–64.
- M. Sun, G.V. Lowry, K.B. Gregory, Selective oxidation of
bromide in wastewater brines from hydraulic fracturing, Water
Res., 47 (2013) 3723–3731.
- Y. Sun, S.S. Chen, D.C.W. Tsang, N.D.J. Graham, Y.S. Ok, Y.
Feng, X.-D. Li, Zero-valent iron for the abatement of arsenate
and selenate from flowback water of hydraulic fracturing,
Chemosphere, 167 (2017) 163–170.
- A. Zielinska-Jurek, Z. Bielan, I. Wysocka, J. Strychalska, M.
Janczarek, T. Klimczuk, Magnetic semiconductor photocatalysts
for the degradation of recalcitrant chemicals from flow back
water, J. Environ. Manage., 195 (2017) 157–165.
- S.M. Riley, J.M.S. Oliveira, J. Regnery, T.Y. Cath, Hybrid
membrane bio-systems for sustainable treatment of oil and
gas produced water and fracturing flowback water, Sep. Purif.
Technol., 171 (2016) 297–311.
- Z.A. Stoll, C. Forrestal, Z.J. Ren, P. Xu, Shale gas produced water
treatment using innovative microbial capacitive desalination
cell, J. Hazard. Mater., 283 (2015) 847–855.
- F.-R. Ahmadun, A. Pendashteh, L.Ch. Abdullah, D.R.A. Biak,
S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and
gas produced water treatment, J. Hazard. Mater., 170 (2009)
530–551.
- J.M. Estrada, R. Bhamidimarri, A review of the issues and
treatment options for wastewater from shale gas extraction by
hydraulic fracturing, Fuel, 182 (2016) 292–303.
- S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology
for oil field and refinery produced water treatment—a review,
Process Saf. Environ. Prot., 100 (2016) 183–202.
- T.L.S. Silva, S. Morales-Torres, S. Castro-Silva, J.L. Figueiredo,
A.M.T. Silva, An overview on exploration and environmental
impact of unconventional gas sources and treatment options for
produced water, J. Environ. Manage., 200 (2017) 511–529.
- M.C. Chang, H.Y. Shu, H.H. Yu, Y.C. Sung, Reductive
decolourization and total organic carbon reduction of the diazo
dye CI Acid Black 24 by zero-valent iron powder, J. Chem.
Technol. Biotechnol., 81 (2006) 1259–1266.
- L.G. Devi, S.G. Kumar, K.M. Reddy, C. Munikrishnappa, Photo
degradation of Methyl Orange an azo dye by Advanced Fenton
Process using zero valent metallic iron: influence of various
reaction parameters and its degradation mechanism, J. Hazard.
Mater., 164 (2009) 459–467.
- I. Grcic, S. Papic, K. Zizek, N. Koprivanac, Zero-valent iron
(ZVI) Fenton oxidation of reactive dye wastewater under UV-C
and solar irradiation, Chem. Eng. J., 195–196 (2012) 77–90.
- B.-H. Moon, Y.-B. Park, K.-H. Park, Fenton oxidation of
Orange II by pre-reduction using nanoscale zero-valent iron,
Desalination, 268 (2011) 249–252.
- C.-H. Weng, Y.-T. Lin, C.-K. Chang, N. Liu, Decolourization of
direct blue 15 by Fenton/ultrasonic process using a zero-valent
iron aggregate catalyst, Ultrason. Sonochem., 20 (2013) 970–977.
- X. Zhang, M. He, J.-H. Liu, R. Liao, L. Zhao, J. Xie, R. Wang,
S.-T. Yang, H. Wang, Y. Liu, Fe3O4@C nanoparticles as highperformance
Fenton-like catalyst for dye decoloration, Chin.
Sci. Bull., 59 (2014) 3406–3412.
- S.-T. Yang, W. Zhang, J. Xie, R. Liao, X. Zhang, B. Yu, R. Wu,
X. Liu, H. Li, Z. Guo, Fe3O4@SiO2 nanoparticles as a highperformance
Fenton-like catalyst in a neutral environment, RSC
Adv., 5 (2015) 5458–5463.
- S.T. Yang, L.J. Yang, X.Y. Liu, J.R. Xie, X.L. Zhang, B.W. Yu, R.H.
Wu, H.L. Li, L.Y. Chen, J.H. Liu, TiO2-doped Fe3O4 nanoparticles
as high-performance Fenton-like catalyst for dye decoloration,
Sci. China Technol. Sci., 58 (2015) 858–863.
- J. Dong, Y. Zhao, R. Zhao, R. Zhou, Effects of pH and particle
size on kinetics of nitrobenzene reduction by zero-valent iron, J.
Environ. Sci., 22 (2010) 1741–1747.
- J. Shen, C. Ou, Z. Zhou, J. Chen, K. Fang, X. Sun, J. Li, L. Zhou,
L. Wang, Pretreatment of 2,4-dinitroanisole (DNAN) producing
wastewater using a combined zero-valent iron (ZVI) reduction
and Fenton oxidation process, J. Hazard. Mater., 260 (2013)
993–1000.
- I.R. Bautitz, A.C. Velosa, R.F.P. Nogueira, Zero valent iron
mediated degradation of the pharmaceutical diazepam,
Chemosphere, 88 (2012) 688–692.
- Y. Segura, F. Martínez, J.A. Melero, Effective pharmaceutical
wastewater degradation by Fenton oxidation with zero-valent
iron, Appl. Catal., B, 136–137 (2013) 64–69.
- M. Barreto-Rodrigues, F.T. Silva, T.C.B. Paiva, Optimization of
Brazilian TNT industry wastewater treatment using combined
zero-valent iron and fenton processes, J. Hazard. Mater., 168
(2009) 1065–1069.
- D. Kim, J. Kim, W. Choi, Effect of magnetic field on the zero
valent iron induced oxidation reaction, J. Hazard. Mater., 192
(2011) 928–931.
- A. Shimizu, M. Tokumura, K. Nakajima, Y. Kawase, Phenol
removal using zero-valent iron powder in the presence of
dissolved oxygen: roles of decomposition by the Fenton reaction
and adsorption/precipitation, J. Hazard. Mater., 201–202 (2012)
60–67.
- A.S. Fjordbøge, A. Baun, T. Vastrup, P. Kjeldsen, Zero valent
iron reduces toxicity and concentrations of organophosphate
pesticides in contaminated groundwater, Chemosphere, 90
(2013) 627–633.
- Y. Xi, Z. Sun, T. Hreid, G.A. Ayoko, R.L. Frost, Bisphenol A
degradation enhanced by air bubbles via advanced oxidation
using in situ generated ferrous ions from nano zero-valent iron/
palygorskite composite materials, Chem. Eng. J., 247 (2014)
66–74.
- R.C. Martins, D.V. Lopes, M.J. Quina, R.M. Quinta-Ferreira,
Treatment improvement of urban landfill leachates by Fenton-like
process using ZVI, Chem. Eng. J., 192 (2012) 219–225.
- P. Lai, H. Zhao, C. Wang, J. Ni, Advanced treatment of coking
wastewater by coagulation and zero-valent iron processes, J.
Hazard. Mater., 147 (2007) 232–239.
- M.R. Taha, A.H. Ibrahim, Characterization of nano zero-valent
iron (nZVI) and its application in sono-Fenton process to
remove COD in palm oil mill effluent, J. Environ. Chem. Eng., 2
(2014) 1–8.
- F.S. Fateminia, C. Falamaki, Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive
nitrate removal, Process Saf. Environ., 91 (2013) 304–310.
- T. Suzuki, M. Moribe, Y. Oyama, M. Niinae, Mechanism of
nitrate reduction by zero-valent iron: equilibrium and kinetics
studies, Chem. Eng. J., 183 (2012) 271–277.
- P. Pourrezaei, A. Alpatova, K. Khosravi, P. Drzewicz, Y. Chen,
P. Chelme-Ayala, M.G. El-Din, Removal of organic compounds
and trace metals from oil sands process-affected water using
zero valent iron enhanced by petroleum coke, J. Environ.
Manage., 139 (2014) 50–58.
- R.C. Martins, M. Nunesa, L.M. Gando-Ferreira, R.M. Quinta-Ferreira, Nanofiltration and Fenton’s process over iron shavings
for surfactants removal, Environ. Technol., 35 (2014) 2380–2388.
- B.I. Kharisov, O.V. Kharissova, H.V.R. Dias, U.O. Méndez,
I. Gómez de la Fuente, Y. Peña, A.V. Dimas, Iron-based
Nanomaterials in the Catalysis, L.E. Norena, Ed., Advanced
Catalytic Materials – Photocatalysis and Other Current
Trends, InTech, 2016, doi:10.5772/61862. Available at: https://www.intechopen.com/books/advanced-catalytic-materialsphotocatalysis-and-other-current-trends/iron-basednanomaterials-in-the-catalysis (Accessed 03.10.2018).
- M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez,
Preparation of magnetite-based catalysts and their application
in heterogeneous Fenton oxidation – a review, Appl. Catal., B,
176–177 (2015) 249–265.
- A. Babuponnusami, K. Muthukumar, A review on Fenton and
improvements to the Fenton process for wastewater treatment,
J. Environ. Chem. Eng., 2 (2014) 557–572.
- N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like
processes for organic wastewater treatment, J. Environ. Chem.
Eng., 4 (2016) 762–787.
- J. Bogacki, P. Marcinowski, J. Zawadzki, M. Majewski, S.
Sivakumar, Oczyszczanie ścieków z instalacji odsiarczania
spalin z wykorzystaniem procesu Fe0/H2O2, Przem. Chem., 96
(2017) 2486–2490 (in Polish).
- J. Bogacki, H. Al-Hazmi, Automotive fleet repair facility
wastewater treatment using air/ZVI and air/ZVI/H2O2
processes, Arch. Environ. Prot., 43 (2017) 24–31.
- J. Bogacki, P. Marcinowski, E. Zapałowska, J. Maksymiec,
J. Naumczyk, Cosmetic wastewater treatment by ZVI/H2O2
process, Environ. Technol., 38 (2017) 2589–2600.
- W.T.M. Audenaert, D. Vandierendonck, S.W.H. Van Hulle, I.
Nopens, Comparison of ozone and HO• induced conversion of
effluent organic matter (EfOM) using ozonation and UV/H2O2
treatment, Water Res., 47 (2013) 2387–2398.
- L. Morrow, D.K. Potter, A.R. Barron, Detection of magnetic
nanoparticles against proppant and shale reservoir rocks, J.
Exp. Nanosci., 10 (2014) 1028–1041.
- L. Morrow, B. Snow, A. Ali, S.J. Maguire-Boyle, Z. Almutairi,
D.K. Potter, A.R. Barron, Temperature dependence on the mass
susceptibility and mass magnetization of superparamagnetic
Mn–Zn–ferrite nanoparticles as contrast agents for magnetic
imaging of oil and gas reservoirs, J. Exp. Nanosci., 13 (2018)
107–118.
- J. Bogacki, J. Zawadzki, Multipurpose usage of magnetic
proppants during shale gas exploitation, Ecol. Chem. Eng. S, in
press.