References

  1. E. de Guire, Shale gas recovery—engineering a big business, Am. Ceram. Soc. Bull., 93 (2014) 27.
  2. J. Zawadzki, J. Bogacki, Smart magnetic markers use in hydraulic fracturing, Chemosphere, 162 (2016) 23–30.
  3. PIG, Ocena zasobów wydobywalnych gazu ziemnego i ropy naftowej w formacjach łupkowych dolnego paleozoiku w Polsce (basen bałtycko – podlasko – lubelski), 2012 (in Polish). Available at: https://www.pgi.gov.pl/docman-tree-all/aktualnosci-2012/zasoby-gazu/771-raport-pl/file.html (Accessed 03.10.2018).
  4. J.B. Curtis, Fractured shale-gas systems, AAPG Bull., 86 (2002) 1921–1938.
  5. F. Javadpour, D. Fisher, M. Unsworth, Nanoscale gas flow in shale gas sediments, J. Can. Pet. Technol., 46 (2007) 55–61.
  6. M. Konieczyńska, M. Woźnicka, O. Antolak, R. Janica, G. Lichtarski, M. Nidental, J. Otwinowski, A. Starzycka, B. Stec, W. Grzegorz, Badania aspektów środowiskowych procesu szczelinowania hydraulicznego wykonanego w otworze Łebień LE-2H, Państwowy Instytut Geologiczny, Warszawa, 2011 (in Polish).
  7. F. Liang, M. Sayed, G.A. Al-Muntasheri, F.F. Chang, L. Li, A comprehensive review on proppant technologies, Petroleum, 2 (2015) 1–14.
  8. United States House of Representatives Committee on Energy and Commerce Minority Staff, Chemicals Used in Hydraulic Fracturing, 2011. Available at: http://www.conservation.ca.gov/dog/general_information/Documents/Hydraulic%20Fracturing%20Report%204%2018%2011.pdf (Accessed 03.10.2018).
  9. M.K. Camarillo, J.K. Domen, W.T. Stringfellow, Physicalchemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment, J. Environ. Manage., 183 (2016) 164–174.
  10. I. Ferrer, E.M. Thurman, Chemical constituents and analytical approaches for hydraulic fracturing waters, Trends Environ. Anal. Chem., 5 (2015) 18–25.
  11. N. Shrestha, G. Chilkoor, J. Wilder, V. Gadhamshetty, J.J. Stone, Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale, Water Res., 108 (2017) 1–24.
  12. W.T. Stringfellow, J.K. Domen, M.K. Camarillo, W.L. Sandelin, S. Borglin, Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing, J. Hazard. Mater., 275 (2014) 37–54.
  13. J. Yuan, D. Luo, L. Feng, A review of the technical and economic evaluation techniques for shale gas development, Appl. Energy, 148 (2015) 49–65.
  14. B. Saba, Potential treatment options for hydraulic fracturing return fluids: a review, Chem. Bio. Eng. Rev., 1 (2014) 273–279.
  15. A. Kreuze, Ch. Schelly, E. Norman, To frack or not to frack: perceptions of the risks and opportunities of high-volume hydraulic fracturing in the United States, Energy Res. Social Sci., 20 (2016) 45–54.
  16. C. Baranzelli, I. Vandecasteele, R.R. Barranco, I.M. Rivero, N. Pelletier, O. Batelaan, C. Lavalle, Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland, Energy Policy, 84 (2015) 80–95.
  17. US EPA, Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, US Environmental Protection Agency, Office of Research and Development, Washington D.C., USA, 2011.
  18. Q. Meng, Spatial analysis of environment and population at risk of natural gas fracking in the state of Pennsylvania, USA, Sci. Total Environ., 515–516 (2015) 198–206.
  19. L. Gandossi, An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production, Report EUR 26347 EN, Institute for Energy and Transport, European Commission, Luxembourg: European Union, 2013. doi: 10.2790/99937. Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/30129/1/an%20overview%20of%20hydraulic%20fracturing%20and%20other%20stimulation%20technologies%20%282%29.pdf (Accessed dated 03.10.2018).
  20. A. Rogala, J. Krzysiek, M. Bernaciak, J. Hupka, Non aqueous fracturing technologies for shale gas recovery, Physicochem. Prob. Miner. Process., 49 (2013) 313–322.
  21. N. Mehta, F. O’ Sullivan, Water Management in Unconventional Oil and Gas Development—The Issues and Their Optimization, S. Ahuja, Ed., Food, Energy, and Water the Chemistry Connection, Elsevier, 2015, pp. 217–241. doi: 10.1016/B978-0-12-800211-7.00008-9. Available at: https://www.sciencedirect.com/science/article/pii/B9780128002117000089 (Accessed 03.10.2018).
  22. A. Kowalik-Klimczak, M. Szwast, P. Gierycz, Membrane processes in treatment of flowback fluid from hydraulic fracturing of shale gas formations, Przem. Chem., 95 (2016) 948–952 (in Polish).
  23. A. Altaee, N. Hilal, Dual-stage forward osmosis/pressure retarded osmosis process for hypersaline solutions and fracking wastewater treatment, Desalination, 350 (2014) 79–85.
  24. G. Chen, Z. Wang, L.D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M. Zhang, J. Song, T. He, Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: membrane fouling and mitigation, Desalination, 366 (2015) 113–120.
  25. K.L. Hickenbottom, N.T. Hancock, N.R. Hutchings, E.W. Appleton, E.G. Beaudry, P. Xu, T.Y. Cath, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations, Desalination, 312 (2013) 60–66.
  26. F.-X. Kong, J.-F. Chen, H.-M. Wang, X.-N. Liu, X.-M. Wang, X. Wen, Ch.-M. Chen, Y.-F. Xie, Application of coagulation-UF hybrid process for shale gas fracturing flowback water recycling: performance and fouling analysis, J. Membr. Sci., 524 (2017) 460–469.
  27. S. Lee, Y.Ch. Kim, Calcium carbonate scaling by reverse draw solute diffusion in a forward osmosis membrane for shale gas wastewater treatment, J. Membr. Sci., 522 (2017) 257–266.
  28. D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri, T. Hayes, D.R. Paul, B.D. Freeman, Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study, J. Membr. Sci., 437 (2013) 265–275.
  29. J.S. Rosenblum, K.A. Sitterley, E.M. Thurman, I. Ferrer, K.G. Linden, Hydraulic fracturing wastewater treatment by coagulation-adsorption for removal of organic compounds and turbidity, J. Environ. Chem. Eng., 4 (2016) 1978–1984.
  30. H. Hao, X. Huang, C. Gao, X. Gao, Application of an integrated system of coagulation and electrodialysis for treatment of wastewater produced by fracturing, Desal. Wat. Treat., 55 (2015) 2034–2043.
  31. F.L. Lobo, H. Wang, T. Huggins, J. Rosenblum, K.G. Linden, Z.J. Ren, Low-energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation with biochar, J. Hazard. Mater., 309 (2016) 180–184.
  32. M.A. Sari, S. Chellam, Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation, J. Colloid Interface Sci., 458 (2015) 103–111.
  33. M. Peraki, E. Ghazanfari, G.F. Pinder, T.L. Harrington, Electrodialysis: an application for the environmental protection in shale-gas extraction, Sep. Purif. Technol., 161 (2016) 96–103.
  34. Y. Lester, Y. Ferrer, E.M. Thurman, K.A. Sitterley, J.A. Korak, G. Aiken, K.G. Linden, Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment, Sci. Total Environ., 512–513 (2015) 637–644.
  35. Y. Liu, D. Wu, M. Chen, L. Ma, H. Wang, S. Wang, Wet air oxidation of fracturing flowback fluids over promoted bimetallic Cu-Cr catalyst, Catal. Commun., 90 (2017) 60–64.
  36. M. Sun, G.V. Lowry, K.B. Gregory, Selective oxidation of bromide in wastewater brines from hydraulic fracturing, Water Res., 47 (2013) 3723–3731.
  37. Y. Sun, S.S. Chen, D.C.W. Tsang, N.D.J. Graham, Y.S. Ok, Y. Feng, X.-D. Li, Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing, Chemosphere, 167 (2017) 163–170.
  38. A. Zielinska-Jurek, Z. Bielan, I. Wysocka, J. Strychalska, M. Janczarek, T. Klimczuk, Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water, J. Environ. Manage., 195 (2017) 157–165.
  39. S.M. Riley, J.M.S. Oliveira, J. Regnery, T.Y. Cath, Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water, Sep. Purif. Technol., 171 (2016) 297–311.
  40. Z.A. Stoll, C. Forrestal, Z.J. Ren, P. Xu, Shale gas produced water treatment using innovative microbial capacitive desalination cell, J. Hazard. Mater., 283 (2015) 847–855.
  41. F.-R. Ahmadun, A. Pendashteh, L.Ch. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170 (2009) 530–551.
  42. J.M. Estrada, R. Bhamidimarri, A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing, Fuel, 182 (2016) 292–303.
  43. S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology for oil field and refinery produced water treatment—a review, Process Saf. Environ. Prot., 100 (2016) 183–202.
  44. T.L.S. Silva, S. Morales-Torres, S. Castro-Silva, J.L. Figueiredo, A.M.T. Silva, An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water, J. Environ. Manage., 200 (2017) 511–529.
  45. M.C. Chang, H.Y. Shu, H.H. Yu, Y.C. Sung, Reductive decolourization and total organic carbon reduction of the diazo dye CI Acid Black 24 by zero-valent iron powder, J. Chem. Technol. Biotechnol., 81 (2006) 1259–1266.
  46. L.G. Devi, S.G. Kumar, K.M. Reddy, C. Munikrishnappa, Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism, J. Hazard. Mater., 164 (2009) 459–467.
  47. I. Grcic, S. Papic, K. Zizek, N. Koprivanac, Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation, Chem. Eng. J., 195–196 (2012) 77–90.
  48. B.-H. Moon, Y.-B. Park, K.-H. Park, Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron, Desalination, 268 (2011) 249–252.
  49. C.-H. Weng, Y.-T. Lin, C.-K. Chang, N. Liu, Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst, Ultrason. Sonochem., 20 (2013) 970–977.
  50. X. Zhang, M. He, J.-H. Liu, R. Liao, L. Zhao, J. Xie, R. Wang, S.-T. Yang, H. Wang, Y. Liu, Fe3O4@C nanoparticles as highperformance Fenton-like catalyst for dye decoloration, Chin. Sci. Bull., 59 (2014) 3406–3412.
  51. S.-T. Yang, W. Zhang, J. Xie, R. Liao, X. Zhang, B. Yu, R. Wu, X. Liu, H. Li, Z. Guo, Fe3O4@SiO2 nanoparticles as a highperformance Fenton-like catalyst in a neutral environment, RSC Adv., 5 (2015) 5458–5463.
  52. S.T. Yang, L.J. Yang, X.Y. Liu, J.R. Xie, X.L. Zhang, B.W. Yu, R.H. Wu, H.L. Li, L.Y. Chen, J.H. Liu, TiO2-doped Fe3O4 nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Sci. China Technol. Sci., 58 (2015) 858–863.
  53. J. Dong, Y. Zhao, R. Zhao, R. Zhou, Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron, J. Environ. Sci., 22 (2010) 1741–1747.
  54. J. Shen, C. Ou, Z. Zhou, J. Chen, K. Fang, X. Sun, J. Li, L. Zhou, L. Wang, Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process, J. Hazard. Mater., 260 (2013) 993–1000.
  55. I.R. Bautitz, A.C. Velosa, R.F.P. Nogueira, Zero valent iron mediated degradation of the pharmaceutical diazepam, Chemosphere, 88 (2012) 688–692.
  56. Y. Segura, F. Martínez, J.A. Melero, Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron, Appl. Catal., B, 136–137 (2013) 64–69.
  57. M. Barreto-Rodrigues, F.T. Silva, T.C.B. Paiva, Optimization of Brazilian TNT industry wastewater treatment using combined zero-valent iron and fenton processes, J. Hazard. Mater., 168 (2009) 1065–1069.
  58. D. Kim, J. Kim, W. Choi, Effect of magnetic field on the zero valent iron induced oxidation reaction, J. Hazard. Mater., 192 (2011) 928–931.
  59. A. Shimizu, M. Tokumura, K. Nakajima, Y. Kawase, Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation, J. Hazard. Mater., 201–202 (2012) 60–67.
  60. A.S. Fjordbøge, A. Baun, T. Vastrup, P. Kjeldsen, Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater, Chemosphere, 90 (2013) 627–633.
  61. Y. Xi, Z. Sun, T. Hreid, G.A. Ayoko, R.L. Frost, Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/ palygorskite composite materials, Chem. Eng. J., 247 (2014) 66–74.
  62. R.C. Martins, D.V. Lopes, M.J. Quina, R.M. Quinta-Ferreira, Treatment improvement of urban landfill leachates by Fenton-like process using ZVI, Chem. Eng. J., 192 (2012) 219–225.
  63. P. Lai, H. Zhao, C. Wang, J. Ni, Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, J. Hazard. Mater., 147 (2007) 232–239.
  64. M.R. Taha, A.H. Ibrahim, Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent, J. Environ. Chem. Eng., 2 (2014) 1–8.
  65. F.S. Fateminia, C. Falamaki, Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal, Process Saf. Environ., 91 (2013) 304–310.
  66. T. Suzuki, M. Moribe, Y. Oyama, M. Niinae, Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies, Chem. Eng. J., 183 (2012) 271–277.
  67. P. Pourrezaei, A. Alpatova, K. Khosravi, P. Drzewicz, Y. Chen, P. Chelme-Ayala, M.G. El-Din, Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke, J. Environ. Manage., 139 (2014) 50–58.
  68. R.C. Martins, M. Nunesa, L.M. Gando-Ferreira, R.M. Quinta-Ferreira, Nanofiltration and Fenton’s process over iron shavings for surfactants removal, Environ. Technol., 35 (2014) 2380–2388.
  69. B.I. Kharisov, O.V. Kharissova, H.V.R. Dias, U.O. Méndez, I. Gómez de la Fuente, Y. Peña, A.V. Dimas, Iron-based Nanomaterials in the Catalysis, L.E. Norena, Ed., Advanced Catalytic Materials – Photocatalysis and Other Current Trends, InTech, 2016, doi:10.5772/61862. Available at: https://www.intechopen.com/books/advanced-catalytic-materialsphotocatalysis-and-other-current-trends/iron-basednanomaterials-in-the-catalysis (Accessed 03.10.2018).
  70. M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review, Appl. Catal., B, 176–177 (2015) 249–265.
  71. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2 (2014) 557–572.
  72. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  73. J. Bogacki, P. Marcinowski, J. Zawadzki, M. Majewski, S. Sivakumar, Oczyszczanie ścieków z instalacji odsiarczania spalin z wykorzystaniem procesu Fe0/H2O2, Przem. Chem., 96 (2017) 2486–2490 (in Polish).
  74. J. Bogacki, H. Al-Hazmi, Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes, Arch. Environ. Prot., 43 (2017) 24–31.
  75. J. Bogacki, P. Marcinowski, E. Zapałowska, J. Maksymiec, J. Naumczyk, Cosmetic wastewater treatment by ZVI/H2O2 process, Environ. Technol., 38 (2017) 2589–2600.
  76. W.T.M. Audenaert, D. Vandierendonck, S.W.H. Van Hulle, I. Nopens, Comparison of ozone and HO induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment, Water Res., 47 (2013) 2387–2398.
  77. L. Morrow, D.K. Potter, A.R. Barron, Detection of magnetic nanoparticles against proppant and shale reservoir rocks, J. Exp. Nanosci., 10 (2014) 1028–1041.
  78. L. Morrow, B. Snow, A. Ali, S.J. Maguire-Boyle, Z. Almutairi, D.K. Potter, A.R. Barron, Temperature dependence on the mass susceptibility and mass magnetization of superparamagnetic Mn–Zn–ferrite nanoparticles as contrast agents for magnetic imaging of oil and gas reservoirs, J. Exp. Nanosci., 13 (2018) 107–118.
  79. J. Bogacki, J. Zawadzki, Multipurpose usage of magnetic proppants during shale gas exploitation, Ecol. Chem. Eng. S, in press.