References

  1. C.A. Velis, P.J. Longhurst, G.H. Drew, R. Smith, S.J. Pollard, Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering, Bioresour. Technol., 100 (2009) 2747–2761.
  2. D. Li, Y. Hong, M. Xu, H. Luo, G. Sun, Progress in construction of microbial fuel cell, Chin. J. Appl. Environ. Biol., 1 (2008) 147–152.
  3. S.S. Adav, D.J. Lee, K.Y. Show, J.H. Tay, Aerobic granular sludge: Recent advances, Biotechnol. Adv., 26 (2008) 411–423.
  4. Y.Z. Peng, L. Wu, Y. Ma, S.Y. Wang, L.Y. Li, Advances: granulation mechanism, characteristics and application of aerobic sludge granules, Chin. Environ. Sci., 31 (2010) 273–281.
  5. E. Morgenroth, T. Sherden, M.C.M. van Loosdrecht, J.J. Heijnen, P.A. Wilderer, Aerobic granular sludge in a sequencing batch reactor, Water Res., 31 (1997) 3191–3194.
  6. Z. Song, N. Ren, K. Zhang, L. Tong, Influence of temperature on the characteristics of aerobic granulation in sequencing batch airlift reactors, J. Environ. Sci., 21 (2009) 273–278.
  7. J.H. Tay, Q.S. Liu, Y. Liu, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91 (2001) 168–175.
  8. G. Lettinga, A.F.M. van Velsen, S.W. Hobma, W. de Zeeuw, A. Klapwijk, Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment, Biotechnol. Bioeng., 22 (1980) 699–734.
  9. B. Arrojo, A. Mosquera-Corral, J.M. Garrido, R. Méndez, Aerobic granulation with industrial wastewater in sequencing batch reactors, Water Res., 38 (2004) 3389–3399.
  10. M.C. Veiga, M.K. Jain, W. Wu, R.I. Hollingsworth, J.G. Zeikus, Composition and role of extracellular polymers in methanogenic granules, Appl. Environ. Microbiol., 63 (1997) 403–407.
  11. Y. Liu, S.F. Yang, L. Qin, J.H. Tay, A thermodynamic interpretation of cell hydrophobicity in aerobic granulation, Appl. Microbiol. Biotechnol., 64 (2004) 410–415.
  12. Y. Liu, J.H. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Res., 36 (2002) 1653–1665.
  13. M. Behera, M.M. Ghangrekar, Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH, Bioresour. Technol., 100 (2009) 5114–5121.
  14. H. Wang, P. Yang, Y. Guo, X. Liao, X. Li, L. Wang, Study on property of microbial fuel with porous spheroidal particles, Chin. J. Environ. Eng., 4 (2010) 352–354.
  15. J.S. Huang, P. Yang, Y. Guo, Y. Liu, T. Su, Effects of catholyte and substrate concentration on simultaneous wastewater treatment and electricity production for AFB-MFC, Chin. J. Environ. Eng., 6 (2012) 462–466.
  16. State Environmental Protection Administration of China, Monitoring and Analytic Methods of Water and Wastewater, 4th ed., Environmental Science Press of China, Beijing, China, 2002.
  17. Y. Chen, W.J. Jiang, D.T. Liang, J.H. Tay, Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors, Appl. Microbiol. Biotechnol., 76 (2007) 1199–1208.
  18. A.J. Li, X.Y. Li, H.Q. Yu, Granular activated carbon for aerobic sludge granulation in a bioreactor with a low-strength wastewater influent, Sep. Purif. Technol., 80 (2011) 276–283.
  19. S.G. Wang, X.W. Liu, W.X. Gong, B.Y. Gao, D.H. Zhang, H.Q. Yu, Aerobic granulation with brewery wastewater in a sequencing batch reactor, Bioresour. Technol., 98 (2007) 2142–2147.
  20. N.H. Rosman, A.N. Anuar, I. Othman, H. Harun, M.Z. Sulong, S.H. Elias, M.A.H.M. Hassan, S. Chelliapan, Z. Ujang, Cultivation of aerobic granular sludge for rubber wastewater treatment, Bioresour. Technol., 129 (2013) 620–623.
  21. J.H. Tay, V. Ivanov, S. Pan, S.T.L. Tay, Specific layers in aerobically grown microbial granules, Lett. Appl. Microbiol., 34 (2002) 254–257.
  22. S.D. Weber, W. Ludwig, K.H. Schleifer, J. Fried, Microbial composition and structure of aerobic granular sewage biofilms, Appl. Environ. Microbiol., 73 (2007) 6233–6240.
  23. X. Zhang, P.L. Bishop, Biodegradability of biofilm extracellular polymeric substances, Chemosphere, 50 (2003) 63–69.
  24. Y.Q. Liu, W.W. Wu, J.H. Tay, J.L. Wang, Starvation is not a prerequisite for the formation of aerobic granules, Appl. Microbiol. Biotechnol., 76 (2007) 211–216.
  25. J.L. Wang, Z.J. Zhang, W.W. Wu, Research advances in aerobic granular sludge, Acta Scientiae Circumstantiae, 29 (2009) 449–473.
  26. J.J. Barr, A.E. Cook, P.L. Bond, Granule formation mechanisms within an aerobic wastewater system for phosphorus removal, Appl. Environ. Microbiol., 76 (2010) 7588–7597.
  27. S. Orla, A.S. Mark, R. Andreas, K. Per, Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation, J. Bacteriol., 186 (2004) 8058–8065.
  28. R.B. Appala, C. Shankararaman, L.G. Paul, H.E. Mark, S.L. Alan, M.R. Kevin, Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res., 44 (2010) 4505–4516.
  29. S.J. You, Microbial Fuel Cell for Electricity Generation During Organic Wastewater Treatment, PhD Thesis, Harbin Institute of Technology, China, 2008.
  30. Z. Li, L. Yao, L. Kong, H. Liu, Electricity generation using a baffled microbial fuel cell convenient for stacking, Bioresour. Technol., 99 (2008) 1650–1655.
  31. H. Liu, S. Cheng, L. Huang, B.E. Logan, Scale-up of membranefree single-chamber microbial fuel cells, J. Power Sources, 179 (2008) 274–279.
  32. H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38 (2004) 2281–2285.
  33. G. Antonopoulou, K. Stamatelatou, S. Bebelis, G. Lyberatos, Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell, Biochem. Eng. J., 50 (2010) 10–15.
  34. K. Rabaey, W. Ossieur, M. Verhaege, W. Verstraete, Continuous microbial fuel cells convert carbohydrates to electricity, Water Sci. Technol., 52 (2005) 515–523.