References
- J.C. Price, Using spatial context in satellite data to infer regional
scale evapotranspiration, IEEE Trans. Geosci. Remote Sens., 28
(1990) 940–948.
- T. Carlson, An overview of the “Triangle Method” for estimating
surface evapotranspiration and soil moisture from satellite
imagery, Sensors, 7 (2007) 1612–1629.
- S.N. Goward, G.D. Cruickshanks, A.S. Hope, Observed relation
between thermal emission and reflected spectral radiance of a
complex vegetated landscape, Remote Sens. Environ., 18 (1985)
137–146.
- R.R. Nemani, S.W. Running, Estimation of regional surface
resistance to evapotranspiration from NDVI and thermal-IR
AVHRR data, J. Appl. Meteorol., 28 (1989) 276–284.
- S. Goward, A. Hope, Evapotranspiration from combined
reflected solar and emitted terrestrial radiation: preliminary
FIFE results from AVHRR data, Adv. Space Res., 9 (1989)
239–249.
- T.N. Carlson, E.M. Perry, T.J. Schmugge, Remote estimation of
soil moisture availability and fractional vegetation cover for
agricultural fields, Agric. For. Meteorol., 52 (1990) 45–69.
- R. Nemani, L. Pierce, S. Running, Developing satellite-derived
estimates of surface moisture status, J. Appl. Meteorol., 32
(1993) 548–557.
- T.N. Carlson, R.R. Gillies, E.M. Perry, A method to make use
of thermal infrared temperature and NDVI measurements to
infer surface soil water content and fractional vegetation cover,
Remote Sens. Rev., 9 (1994) 161–173.
- R. Gillies, W. Kustas, K. Humes, A verification of the ‘triangle’
method for obtaining surface soil water content and energy
fluxes from remote measurements of the Normalized Difference
Vegetation Index (NDVI) and surface e, Int. J. Remote Sens., 18
(1997) 3145–3166.
- E. Boegh, H. Soegaard, N. Hanan, P. Kabat, L. Lesch, A remote
sensing study of the NDVI–Ts relationship and the transpiration
from sparse vegetation in the Sahel based on high-resolution
satellite data, Remote Sens. Environ., 69 (1999) 224–240.
- I. Sandholt, K. Rasmussen, J. Andersen, A simple interpretation
of the surface temperature/vegetation index space for
assessment of surface moisture status, Remote Sens. Environ.,
79 (2002) 213–224.
- L. Prihodko, S.N. Goward, Estimation of air temperature from
remotely sensed surface observations, Remote Sens. Environ.,
60 (1997) 335–346.
- J.A. Otkin, M.C. Anderson, C.R. Hain, M.D. Svoboda, D.K.
Johnson, R. Mueller, T. Tadesse, B.D. Wardlow, J. Brown,
Assessing the evolution of soil moisture and vegetation
conditions during the 2012 United States flash drought, Agric.
For. Meteor., 218–219 (2016) 230–242.
- S. Stisen, I. Sandholt, A. Nørgaard, R. Fensholt, K.H. Jensen,
Combining the triangle method with thermal inertia to estimate
regional evapotranspiration—applied to MSG-SEVIRI data
in the Senegal River basin, Remote Sens. Environ., 112 (2008)
1242–1255.
- M. Minacapilli, S. Consoli, D. Vanella, G. Ciraolo, A. Motisi,
A time domain triangle method approach to estimate actual
evapotranspiration: application in a Mediterranean region using
MODIS and MSG-SEVIRI products, Remote Sens. Environ., 174
(2016) 10–23.
- J. Zhao, J. Xu, X. Xie, H. Lu, Drought monitoring based on
TIGGE and distributed hydrological model in Huaihe River
Basin, China, Sci. Total Environ., 553 (2016) 358–365.
- T. Zhang, X. Lin, Assessing future drought impacts on yields
based on historical irrigation reaction to drought for four major
crops in Kansas, Sci. Total Environ., 550 (2016) 851–860.
- J. Martínez-Fernández, A. González-Zamora, N. Sánchez, A.
Gumuzzio, C.M. Herrero-Jiménez, Satellite soil moisture for
agricultural drought monitoring: assessment of the SMOS
derived Soil Water Deficit Index, Remote Sens. Environ., 177
(2016) 277–286.
- T.J. Assal, P.L. Anderson, J. Sibold, Spatial and temporal
trends of drought effects in a heterogeneous semi-arid forest
ecosystem, Forest Ecol. Manage., 365 (2016) 137–151.
- T.N. Carlson, R.R. Gillies, T.J. Schmugge, An interpretation of
methodologies for indirect measurement of soil water content,
Agric. For. Meteor., 77 (1995) 191−205.
- L. Jiang, S. Islam, A methodology for estimation of surface
evapotranspiration over large areas using remote sensing
observations, Geophys. Res. Lett., 26 (1999) 2773−2776.
- L. Jiang, S. Islam, W. Guo, A.S. Jutla, S.U.S. Senarath,
B.H. Ramsay, E. Eltahir, A satellite-based Daily Actual
Evapotranspiration estimation algorithm over South Florida,
Global Planet. Change, 67 (2009) 62–77.
- D. Long, V.P. Singh, A modified surface energy balance algorithm
for land (M-SEBAL) based on a trapezoidal framework, Water
Resour. Res., 48 (2012). doi: 10.1029/2011WR010607.
- M. Moran, T. Clarke, Y. Inoue, A. Vidal, Estimating crop water
deficit using the relation between surface-air temperature and
spectral vegetation index, Remote Sens. Environ., 49 (1994)
246–263.
- A. Karnieli, N. Agam, R.T. Pinker, M. Anderson, M.L. Imhoff,
G.G. Gutman, N. Panov, A. Goldberg, Use of NDVI and land
surface temperature for drought assessment: merits and
limitations, J. Clim., 23 (2010) 618–633.
- Y. Liu, X. Mu, H. Wang, A novel method for extracting green
fractional vegetation cover from digital images, J. Veg. Sci., 23
(2012) 406–418.
- X. Zhang, C. Liao, J. Li, Q. Sun, Fractional vegetation cover
estimation in arid and semi-arid environments using HJ-1
satellite hyperspectral data, Int. J. Appl. Earth Obs. Geoinf., 21
(2013) 506–512.
- J. Bai, S. Liu, G. Hu, Inversion and verification of land surface
temperature with remote sensing TM/ETM+ data, Trans. CSAE,
24 (2008) 148–154 (in Chinese with English abstract).
- J.A. Sobrino, J.C. Jiménez-Muñoz, L. Paolini, Land surface
temperature retrieval from LANDSAT TM 5, Remote Sens.
Environ., 90 (2004) 434–440.
- P.E. Dennison, D.A. Roberts, Endmember selection for multiple
endmember spectral mixture analysis using endmember
average RMSE, Remote Sens. Environ., 87 (2003) 123–135.
- X.H. Wang, P.T. Cong, C.Q. Liu, et al., Analysis of vegetation
variation and stress factors in the Pearl River basin from 2004 to
2013, Acta Ecol. Sinica, 37 (2017) 6494–6503.
- D. Liu, A.K. Mishra, Z. Yu, Evaluating uncertainties in multilayer
soil moisture estimation with support vector machines
and ensemble Kalman filtering, J. Hydrol.,538 (2016) 243–255.