References

  1. J.X. Chang, H.X. Zhang, Y.M. Wang, Y.L. Zhu, Assessing the impact of climate variability and human activities on streamflow variation, Hydrol. Earth Syst. Sci., 20 (2016) 1547–1560.
  2. J.T. Barge, H.O. Sharif, An ensemble empirical mode decomposition, self-organizing map, and linear genetic programming approach for forecasting river streamflow, Water, 8 (2016) 247.
  3. F.H.S. Chiew, N.J. Potter, J. Vaze, C. Petheram, L. Zhang, J. Teng, D.A. Post, Observed hydrologic non-stationarity in far southeastern Australia: implications for modelling and prediction, Stochastic. Environ. Res. Risk Assess., 28 (2014) 3–15.
  4. S.H.W. Wang, B.J. Fu, S.H.L. Piao, Y.H. Lü, P. Ciais, X.M. Feng, Y.F. Wang, Reduced sediment transport in the Yellow River due to anthropogenic changes, Nat. Geosci., 9 (2015) 1–5.
  5. L. Chen, Y. Zhang, J. Zhou, V.P. Singh, S. Guo, J. Zhange, Realtime error correction method combined with combination flood forecasting technique for improving the accuracy of flood forecasting, J. Hydrol., 521 (2015) 157–169.
  6. E. Stonevicius, G. Valiuskevicius, E. Rimkus, J. Kazys, Climate induced changes of Lithuanian rivers runoff in 1960–2009, Water Resour., 14 (2014) 592–603.
  7. S.H.L. Lu, D.L. Li, J. Wen, Analysis on periodic variations and abrupt change of air temperature over Qinghai-Xizang plateau under global warming, Plateau Meteorol., 29 (2010) 1378–1385.
  8. H.C. Lloyd, S.W. Tommy, Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models, J. Hydrol., 397 (2011) 191–201.
  9. D.P. Solomatine, K.N. Dulal, Model trees as an alternative to neural networks in rainfall-runoff modeling, Hydrol. Sci. J., 48 (2003) 399–411.
  10. R.B. Mohammad, Z. Zahra, K. Sungwon, Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods, Water Resour. Manage., 31 (2017) 3843–3865.
  11. O. Kisi, C. Ozkan, A new approach for modeling sedimentdischarge relationship: local weighted linear regression, Water Resour. Manage., 31 (2017) 1–23.
  12. J.-H. Jeon, C.-G. Park, A. Bernard, Comparison of performance between genetic algorithm and SCE-UA for calibration of SCS-CN surface runoff simulation, Water, 6 (2014) 3433–3456.
  13. N. Vahid, H.B. Aida, A. Jan, G. Mekonnen, Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling, J. Hydrol., 407 (2013) 28–40.
  14. X. Zhao, X. Chen, Y. Xu, An EMD-based chaotic least squares support vector machine hybrid model for annual runoff forecasting, Water, 9 (2017) 153.
  15. R.H. Compagnucci, S.A. Blanco, M.A. Figliola, P.M. Jacovkis, Variability in subtropical Andean Argentinean Atuel river: a wavelet approach, Environmetrics, 11 (2015) 251–269.
  16. C. Gaucherel, Use of wavelet transform for temporal characterization of remote watersheds, J. Hydrol., 269 (2002) 101–121.
  17. C.H.M. Liu, L. Cheng, Analysis on runoff series with special reference to drying up courses of Lower Huanghe River, J. Geogr. Sci., 55 (2000) 57–265.
  18. L. Chen, V.P. Singh, Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis, J. Hydrol., 577 (2018) 699–712.
  19. A.H. Tewfiki, D. Sinaha, P. Jorgensen, On the optimal choice of a wavelet for signal representation, IEEE Trans. Inf. Theory, 38 (1992) 747–765.
  20. D. Labat, J. Ronchail, J. Callede, J.L. Guyot, Wavelet analysis of Amazon hydrological regime variability, Geophys. Res. Lett., 31 (2004) 33–45.
  21. J. Wang, J.J. Meng, Research on runoff variations based on wavelet analysis and wavelet neural network model: a case study of the Heihe River drainage basin, J. Geogr. Sci., 17 (2007) 327–338.
  22. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 8 (1998) 903–995.
  23. N.E. Huang, Z. Shen, S.R. Long, A new view of nonlinear water waves: the Hilbert spectrum, Annu. Rev. Fluid Mech., 31 (1999) 417–457.
  24. M. Li, X. Wu, X. Liu, An improved EMD method for timefrequency feature extraction of telemetry vibration signal based on multi-scale median filtering, Circuits Syst. Signal Process., 34 (2015) 815–830.
  25. K.Q. Zhao, A.L. Xuan, Set pair theory-a new theory method of non-define and its applications, Syst. Eng., 14 (1989) 18–23.
  26. K.Q. Zhao, Set Pair Analysis and Its Elementary Application, Science and Technology Publishing House of Zhejiang, Hangzhou, 2000.
  27. Q. Zou, J.ZH. Zhou, CH. Zhou, L.X. Song, J. Guo, Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP, Stochastic Environ. Res. Risk Assess., 27 (2013) 525–546.
  28. B. Zhu, H.F. Wang, W.S.H. Wang, Y.Q. Li, Analysis of relation between flood peak and volume based on set pair analysis, J. Sichuan Univ., 39 (2007) 29–33.
  29. P. Feng, R.G. Han, Z.H.H. Ding, Multiple time-scale SPA analysis on uncertainty relationship between rivers’ runoff time series, J. Sci. Eng., 17 (2009) 716–726.
  30. D.R. Zhang, C.H. Xue, Relationship between the El Nino and precipitation patterns in China since 1500 AD, Q. J. Appl. Meteorol., 5 (1994) 168–175.
  31. D. Liu, Q. Fu, T. Li, W. Li, Wavelet analysis of the complex precipitation series in the Northern Jiansanjiang Administration of the Heilongjiang land reclamation, China, J. Water Clim. Change, 7 (2016) 796–809.
  32. Y. Mei, H. Deng, F. Wang, On midrange periodicities in solar radio flux and sunspot areas, Astrophys. Space Sci., 363 (2018) 84.