References

  1. A.V. Dordio, C. Duarte, M. Barreiros, A.J. Carvalho, A.P. Pinto, C.T. da Costa, Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp. – potential use for phytoremediation?, Bioresour. Technol., 100 (2009) 1156–1161.
  2. S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry, Chem. Rev., 38 (2007) 2319–2364.
  3. T.A. Ternes, A. Joss, H. Siegrist, Scrutinizing pharmaceuticals and personal care products in wastewater treatment, Environ. Sci. Technol., 38 (2004) 392A–399A.
  4. K. Joonwoo, J. Hyosang, K. Jonggu, H. Ishibashi, M. Hirano, K. Nasu, N. Ichikawa, Y. Takao, R. Shinohara, K. Arizono, Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea, J. Health Sci., 55 (2009) 249–258.
  5. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, Water Res., 42 (2008) 3498–3518.
  6. P. Verlicchi, A.M. Al, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review, Sci. Total Environ., 429 (2012) 123–155.
  7. N. Nakada, K. Komori, Y. Suzuki, C. Konishi, I. Houwa, H. Tanaka, Occurrence of 70 pharmaceutical and personal care products in Tone River basin in Japan, Water Sci. Technol., 56 (2007) 133–140.
  8. H.R. Buser, A. Thomas Poiger, M.D. Müller, Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake, Environ. Sci. Technol., 32 (1998) 3449–3456.
  9. D. Ashton, M. Hilton, K.V. Thomas, Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom, Sci. Total Environ., 333 (2004) 167–184.
  10. J.B. Quintana, S. Weiss, T. Reemtsma, Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor, Water Res., 39 (2005) 2654–2664.
  11. M. Petrovic, M.J. Lopez d.A, S. Diaz-Cruz, C. Postigo, J. Radjenovic, M. Gros, D. Barcelo, M.R. Templeton, N. Graham, N. Voulvoulis, Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration, Philos. Trans. R. Soc. London, Ser. A, 367 (2009) 3979–4003.
  12. J. Radjenovic, M. Petrovic, D. Barceló, Fate and distribution ofpharmaceuticals in wastewater and sewage sludge of the conventionalactivated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res., 43 (2009) 831–841.
  13. N.H. Tran, T. Urase, O. Kusakabe, The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds, J. Hazard. Mater., 171 (2009) 1051–1057.
  14. B. Alpaslan Kocamemi, F. Çeçen, Cometabolic degradation of TCE in enriched nitrifying batch systems, J. Hazard. Mater., 125 (2005) 260–265.
  15. K. Kimura, H. Hara, Y. Watanabe, Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors, Environ. Sci. Technol., 41 (2007) 3705–3714.
  16. C. Zwiener, F.H. Frimmel, Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen,and diclofenac, Sci Total Environ., 309 (2003) 201–211.
  17. R. Salgado, A. Oehmen, G. Carvalho, J.P. Noronha, M.A.M. Reis, Biodegradation of clofibric acid and identification of its metabolites, J. Hazard. Mater., 241–242 (2012) 182–189.
  18. P. Avetta, D. Fabbri, M. Minella, M. Brigante, V. Maurino, C. Minero, M. Pazzi, D. Vione, Assessing the phototransformation of diclofenac, clofibric acid and naproxen in surface waters: model predictions and comparison with field data, Water Res., 105 (2016) 383–394.
  19. K. Kimura, H. Hara, Y. Watanabe, Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs), Desalination, 178 (2005) 135–140.
  20. T. Urase, T. Kikuta, Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process, Water Res., 39 (2005) 1289–1300.
  21. T. Okuda, N. Yamashita, H. Tanaka, H. Matsukawa, K. Tanabe, Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants, Environ. Int., 35 (2009) 815–820.
  22. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C., 1998.
  23. D. Shu, Y. He, H. Yue, Q. Wang, Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing, Bioresour. Technol., 186 (2005) 163–172.
  24. T. Kosjek, E. Heath, Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole – time-of-flight mass spectrometry, J. Hydrol., 372 (2009) 109–117.
  25. R. Rosal, M.S. Gonzalo, K. Boltes, P. Letón, J.J. Vaquero, E. García-Calvo, Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid, J. Hazard. Mater., 172 (2009) 1061–1068.
  26. E. Fernandez-Fontaina, F. Omil, J.M. Lema, M. Carballa, Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants, Water Res., 46 (2012) 5434–5444.
  27. Y. Miura, M.N. Hiraiwa, T. Ito, T. Itonaga, Y. Watanabe, S. Okabe, Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance, Water Res., 41 (2007) 627–637.