References

  1. L. Cai, T.B. Chen, D. Gao, J. Yu, Bacterial communities and their association with the bio-drying of sewage sludge, Water Res., 90 (2016) 44–51.
  2. L. Cai, D. Gao, N. Hong, The effects of different mechanical turning regimes on heat changes and evaporation during sewage sludge biodrying, Drying Technol., 33 (2015) 1151–1158.
  3. T.T. Liu, C.W. Cui, J.G. He, J. Tang, Analysis of storage sludge composition characteristics and evolutionary regularity in the Hunhe River basin, Environ. Sci., 39 (2018) 287–294.
  4. B.Q. Yang, L. Zhang, D. Jahng, Importance of initial moisture content and bulking agent for biodrying sewage sludge, Drying Technol., 32 (2013) 135–144.
  5. L. Cai, T. Krafft, T.B. Chen, D. Gao, L. Wang, Structure modification and extracellular polymeric substances conversion during sewage sludge biodrying process, Bioresour. Technol., 216 (2016) 414–421.
  6. L. Cai, T.B. Chen, D. Gao, G.D. Zheng, H.T. Liu, T.H. Pan, Influence of forced air volume on water evaporation during sewage sludge bio-drying, Water Res., 47 (2013) 4767–4773.
  7. Y.J. Shen, T.B. Chen, D. Gao, G.D. Zheng, H.T. Liu, O.W. Yang, Online monitoring of volatile organic compound production and emission during sewage sludge composting, Bioresour. Technol., 123 (2012) 463–470.
  8. J. Huang, Z.H. Yang, G.M. Zeng, H.L. Wang, J.W. Yan, H.Y. Xu, C.L. Gou, A novel approach for improving the drying behavior of sludge by the appropriate foaming pretreatment, Water Res., 68 (2015) 667–679.
  9. S. Navaee-Ardeh, F. Bertrand, P.R. Stuart, Emerging biodrying technology for the drying of pulp and paper mixed sludges, Drying Technol., 24 (2006) 863–878.
  10. D.Q. Zhang, P.J. He, L.Z. Yu, L.M. Shao, Effect of inoculation time on the bio-drying performance of combined hydrolytic–aerobic process, Bioresour. Technol., 100 (2009) 1087–1093.
  11. M.K. Winkler, M.H. Bennenbroek, F.H. Horstink, M.C. van Loosdrecht, G.J. van de Pol, The biodrying concept: an innovative technology creating energy from sewage sludge, Bioresour. Technol., 147 (2013) 124–129.
  12. D.Q. Zhang, P.J. He, L.M. Shao, T.F. Jin, J.Y. Han, Biodrying of municipal solid waste with high water content by combined hydrolytic-aerobic technology, J. Environ. Sci., 20 (2008) 1534–1540.
  13. L. Zhao, W.M. Gu, P.J. He, L.M. Shao, Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge, Water Res., 44 (2010) 6144–6152.
  14. X.W. Li, X.H. Dai, S.J. Yuan, N. Li, Z.G. Liu, J.W. Jin, Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of highsolid anaerobically digested sludge using biodrying process, Bioresour. Technol., 175 (2015) 245–253.
  15. P.J. He, L. Zhao, W. Zheng, D. Wu, L.M. Shao, Energy balance of a biodrying process for organic wastes of high moisture content: a review, Drying Technol., 31 (2013) 132–145.
  16. S. Navaee-Ardeh, F. Bertrand, P.R. Stuart, Key variables analysis of a novel continuous biodrying process for drying mixed sludge, Bioresour. Technol., 101 (2010) 3379–3387.
  17. C.A. Velis, P.J. Longhurst, G.H. Drew, R. Smith, S.J.T. Pollard, Biodrying for mechanical–biological treatment of wastes: a review, Bioresour. Technol., 100 (2009) 2747–2761.
  18. X.W. Li, X.H. Dai, L.L. Dai, Z.G. Liu, Two-dimensional FTIR correlation spectroscopy reveals chemical changes in dissolved organic matter during the biodrying process of raw sludge and anaerobically digested sludge, RSC Adv., 5 (2015) 82087–82096.
  19. H.Y. Zhang, T. Krafft, D. Gao, G.D. Zheng, L. Cai, Lignocellulose biodegradation in the biodrying process of sewage sludge and sawdust, Drying Technol., 36 (2018) 316–324.
  20. T.T. Liu, C.W. Cui, J.G. He, J. Tang, Biodrying of storage sludge and analysis of the stability and agricultural properties of biodried products, Desal. Wat. Treat., 109 (2018) 104–111.
  21. T.T. Liu, C.W. Cui, J.G. He, J. Tang, Effect of different bulking agents on water variation and thermal balance and their respective contribution to bio-generated heat during long-term storage sludge biodrying process, Environ. Sci. Pollut. Res., 25 (2018) 17602–17610.
  22. J. Yuan, D.F. Zhang, Y. Li, D. Chadwick, G.X. Li, Y. Li, L.L. Du, Effects of adding bulking agents on biostabilization and drying of municipal solid waste, Waste Manage., 62 (2017) 52–60.
  23. L. Zhao, W.M. Gu, P.J. He, L.M. Shao, Biodegradation potential of bulking agents used in sludge bio-drying and their contribution to bio-generated heat, Water Res., 45 (2011) 2322–2330.
  24. F. Yang, G.X. Li, Q.Y. Yang, W.H. Luo, Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting, Chemosphere, 93 (2013) 1393–1399.
  25. R. Yañez, J.L. Alonso, M.J. Díaz, Influence of bulking agent on sewage sludge composting process, Bioresour. Technol., 100 (2009) 5827–5833.
  26. A.A. Zorpas, M. Loizidou, Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge, Bioresour. Technol., 99 (2008) 545–552.
  27. D.Q. Zhang, P.J. He, T.F. Jin, L.M. Shao, Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation, Bioresour. Technol., 99 (2008) 8796–8802.
  28. L. Cai, D. Gao, T.B. Chen, H.T. Liu, G.D. Zheng, Q.W. Yang, Moisture variation associated with water input and evaporation during sewage sludge bio-drying, Bioresour. Technol., 117 (2012) 13–19.
  29. A. Hassen, K. Belguith, N. Jedidi, A. Cherif, M. Cherif, A. Boudabous, Microbial characterization during composting of municipal solid waste, Bioresour. Technol., 80 (2001) 217–225.
  30. Q.H. Zhang, M. Tian, L. Tang, H.X. Li, W.C. Li, J.H. Zhang, H.J. Zhang, Z.G. Mao, Exploration of the key microbes involved in the cellulolytic activity of a microbial consortium by serial dilution, Bioresour. Technol., 132 (2013) 395–400.
  31. K. Wang, H.L. Mao, X.K. Li, Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent, Bioresour. Technol., 249 (2018) 527–535.
  32. V.S. Varma, S. Das, C.V. Sastri, A.S. Kalamdhad, Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste, Sustain. Environ. Res., 27 (2017) 265–272.
  33. X.P. Tian, T. Yang, J.C. He, Q. Chu, X.J. Jia, J. Huang, Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues, Bioresour. Technol., 241 (2017) 374–383.
  34. Huhe, C. Jiang, Y.P. Wu, Y.X. Cheng, Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting, MicrobiologyOpen, 6 (2017) e518.
  35. J.Y. Zhang, X. Cai, L. Qi, C.Y. Shao, Y. Lin, J. Zhang, Y.L. Zhang, P.H. Shen, Y.S. Wei, Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying, Appl. Microbiol. Biotechnol., 99 (2015) 7321–7331.
  36. C. Huilinir, M. Villegas, Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge, Water Res., 82 (2015) 118–128
  37. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C., USA, 1998.
  38. S.D. Bao, Soil Assay on Properties of Agro-chemistry, 3rd ed., China Agriculture Press, Beijing, 2000 (in Chinese).
  39. Z.M. Wei, B.D. Xi, Y. Zhao, S.P. Wang, H.L. Liu, Y.H. Jiang, Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid, Chemosphere, 68 (2007) 368–374.
  40. K. Nakamura, K. Kitamura, Cellulases of Cellulomonas uda, Method Enzymol., 160 (1988) 211–216.
  41. A. Zawadzka, L. Krzystek, P. Stolarek, S. Ledakowicz, Biodrying of organic fraction of municipal solid wastes, Drying Technol., 28 (2010) 1220–1226.
  42. A. Guardia, C. Petiot, D. Rogeau, Influence of aeration rate and biodegradability fractionation on composting kinetics, Waste Manage., 28 (2008) 73–84.
  43. L.M. Shao, Z.H. Ma, H. Zhang, D.Q. Zhang, P.J. He, Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery, Waste Manage., 30 (2010) 1165–1170.
  44. S.Y. Li, D.Y. Li, J.J. Li, G.X. Li, B.X. Zhang, Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates, Bioresour. Technol., 245 (2017) 1299–1302.
  45. J. Zhang, B.Y. Lv, M.Y. Xing, J. Yang, Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation-emission matrix, Waste Manage., 39 (2015) 111–118.
  46. H. Li, Y.K. Li, Y.Y. Jin, S.X. Zou, C.C. Li, Recovery of sludge humic acids with alkaline pretreatment and its impact on subsequent anaerobic digestion, J. Chem. Technol. Biotechnol., 89 (2014) 707–713.
  47. E.G. Lucas, C.G. Izquierdo, M.T.H. Fernández, Changes in humic fraction characteristics and humus-enzyme complexes formation in semiarid degraded soils restored with fresh and composted urban wastes. A 5-year field experiment, J. Soils Sediments, 18 (2016) 1376–1388.
  48. M.Y. Xing, X.W. Li, J. Yang, Z.D. Huang, Y. Lu, Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung, J. Hazard. Mater., 205–206 (2012) 24–31.
  49. K. Wang, X.B. Yin, H.L. Mao, C. Chu, Y. Tian, Changes in structure and function of fungal community in cow manure composting, Bioresour. Technol., 255 (2018) 123–130.
  50. S.M. Tiquia, Evolution of extracellular enzyme activities during manure composting, J. Appl. Microbiol., 92 (2002) 764–775.