References
- A. Krastanov, Z. Alexieva, H. Yemendzhiev, Microbial
degradation of phenol and phenolic derivatives, Eng. Life Sci.,
13 (2013) 76–87.
- Y. Zhuo, Y. Zhong, Y. Xu, Y. Sha, Evaluation of transfer
resistances in the reactive distillation process for phenol
production, Ind. Eng. Chem. Res., 55 (2015) 257–266.
- A. Kargari, Phenol removal from aqueous solutions by a novel
industrial solvent, Chem. Eng. Commun., 202 (2015) 408–413.
- S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives
from water using synthetic resins and low-cost natural
adsorbents: a review, J. Environ. Manage., 90 (2009) 1336.
- M.A. Hararah, K.A. Ibrahim, A.H. Al-Muhtaseb, R.I. Yousef, A.
Abu-Surrah, A. Qatatsheh, Removal of phenol from aqueous
solutions by adsorption onto polymeric adsorbents, J. Appl.
Polym. Sci., 117 (2010) 1908–1913.
- Y.M. Xu, T. Chung, High-performance UiO-66/polyimide mixed
matrix membranes for ethanol, isopropanol and n-butanol
dehydration via pervaporation, J. Membr. Sci., 531 (2017) 16–26.
- S.J. Han, F.C. Ferreira, A. Livingston, Membrane aromatic
recovery system (MARS) – a new membrane process for the
recovery of phenols from wastewaters, J. Membr. Sci., 188 (2001)
219–233.
- P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental
study of organofunctionalised PDMS membranes for the
pervaporative recovery of phenolic compounds from aqueous
streams, J. Membr. Sci., 190 (2001) 147–157.
- P. Wu, R.W. Field, B.J. Brisdon, R. England, S.J. Barkley,
Optimisation of organofunction PDMS membranes for the
pervaporative recovery of phenolic compounds from aqueous
streams, Sep. Purif. Technol., 22–23 (2001) 339–345.
- H. Ye, X. Yan, X. Zhang, W. Song, Pervaporation properties of
oleyl alcohol-filled polydimethylsiloxane membranes for the
recovery of phenol from wastewater, Iran. Polym. J., 26 (2017)
639–649.
- X. Hao, M. Pritzker, X. Feng, Use of pervaporation for the
separation of phenol from dilute aqueous solutions, J. Membr.
Sci., 335 (2009) 96–102.
- C. Li, X. Zhang, X. Hao, X. Feng, X. Pang, H. Zhang,
Thermodynamic and mechanistic studies on recovering phenol
crystals from dilute aqueous solutions using pervaporation–
crystallization coupling (PVCC) system, Chem. Eng. Sci., 127
(2015) 106–114.
- C. Ding, X. Zhang, C. Li, X. Hao, Y. Wang, G. Guan, ZIF-8
incorporated polyether block amide membrane for phenol
permselective pervaporation with high efficiency, Sep. Purif.
Technol., 166 (2016) 252–261.
- B. Sinha, U.K. Ghosh, N.C. Pradhan, B. Adhikari, Separation
of phenol from aqueous solution by membrane pervaporation
using modified polyurethaneurea membranes, J. Appl. Polym.
Sci., 101 (2006) 1857–1865.
- T. Gupta, N.C. Pradhan, B. Adhikari, Separation of phenol
from aqueous solution by pervaporation using HTPB-based
polyurethaneurea membrane, J. Membr. Sci., 217 (2003) 43–53.
- S. Das, A.K. Banthia, B. Adhikari, Porous polyurethane urea
membranes for pervaporation separation of phenol and
chlorophenols from water, Chem. Eng. J., 138 (2008) 215–223.
- H. Ye, J. Wang, Y. Wang, X. Chen, S. Shi, Effects of simultaneous
chemical cross-linking and physical filling on separation
performances of PU membranes, Iran. Polym. J., 22 (2013)
623–633.
- W. Kujawski, A. Warszawski, W.O. Ratajczak, T. Porbski,
W.A. Capa, A.I. Ostrowska, Application of pervaporation and
adsorption to the phenol removal from wastewater, Sep. Purif.
Technol., 40 (2004) 123–132.
- T. Gupta, N.C. Pradhan, B. Adhikari, Synthesis and performance
of a novel polyurethaneurea as pervaporation membrane for
the selective removal of phenol from industrial waste water,
Bull. Mater. Sci., 25 (2002) 533–536.
- N. Izyumskaya, Y. Alivov, S.J. Cho, H. Morkoc, H. Lee, Y.S.
Kang, Processing, structure, properties, and applications of PZT
thin films, Crit. Rev. Solid State Mater. Sci., 32 (2007) 111–202.
- H. Liu, S. Gao, M. Zhu, P. Chen, D. Pan, Use of manganese/silicon tailing waste for coking wastewater treatment: evaluation
of phenol and phenylamine removal efficiencies, Water Air Soil
Pollut., 226 (2015) 78.
- S.A. Younis, Y.M. Moustafa, Synthesis of urea-modified
MnFe2O4 for aromatic micro-pollutants adsorption from
wastewater: mechanism and modeling, Clean Technol. Environ.
Policy, 19 (2017) 527–540.
- G.D.F. Lima, V.S. Ferreira, N.V. Godoy, R.F. Medeiros, F.M.D.S.
Garrido, E.S. Ribeiro, S. Nakagaki, M.G. Segatelli, M.A. Bezerra,
C.R.T. Tarley, Study of silica-manganese oxide hybrid material
as a new solid phase for on-line continuous flow enrichment of
Cd(II) ions coupled to flame atomic absorption spectrometry,
Microchem. J., 109 (2013) 98–105.
- W. Peng, S. Wang, X. Li, Shape-controlled synthesis of onedimensional
α-MnO2 nanocrystals for organic detection and
pollutant degradation, Sep. Purif. Technol., 163 (2016) 15–22.
- T. Yeo, D. Shin, J. Shin, H. Hwang, B. Seo, J. Lee, W. Choi,
DC-field-driven combustion waves for one-step fabrication
of reduced manganese oxide/multi-walled carbon nanotube
hybrid nanostructures as high-performance supercapacitor
electrodes, J. Mater. Chem. A, 5 (2017) 24707–24719.
- Q. Zhu, L. Wang, Z. An, H. Ye, X. Feng, Hydrothermal synthesis
of silico-manganese nanohybrid for Cu(II) adsorption from
aqueous solution, Appl. Surf. Sci., 371 (2016) 102–111.
- M.L. Sforca, I. Yoshida, C.P. Borges, S.P. Nunes, Hybrid
membranes based on SiO2/polyether-b-polyamide: morphology
and applications, J. Appl. Polym. Sci., 82 (2001) 178–185.
- Q. Zhu, L. Wang, Z. An, H. Ye, X. Feng, Hydrothermal synthesis
of silico-manganese nanohybrid for Cu(II) adsorption from
aqueous solution, Appl. Surf. Sci., 371 (2016) 102–111.
- X. Cheng, F. Pan, M. Wang, W. Li, Y. Song, G. Liu, H. Yang, B.
Gao, H. Wu, Z. Jiang, Hybrid membranes for pervaporation
separations, J. Membr. Sci., 541 (2017) 329–346.
- Y.M. Xu, T. Chung, High-performance UiO-66/polyimide mixed
matrix membranes for ethanol, isopropanol and n-butanol
dehydration via pervaporation, J. Membr. Sci., 531 (2017) 16–26.
- G. Wu, M. Jiang, T. Zhang, Z. Jia, Tunable pervaporation
performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol)
mixed matrix membranes, J. Membr. Sci., 507 (2016) 72–80.
- D. Hua, Y.K. Ong, Y. Wang, T. Yang, T. Chung, ZIF-90/P84
mixed matrix membranes for pervaporation dehydration of
isopropanol, J. Membr. Sci., 453 (2014) 155–167.
- K.S.W. Sing, Reporting physisorption data for gas/solid systems,
Pure Appl. Chem., 57 (1985) 603–619.
- H. Morinaga, Mechanism of metallic particle growth and metalinduced
pitting on Si wafer surface in wet chemical processing,
J. Electrochem. Soc., 141 (1994) 2834–2841.
- D. Sun, P. Yang, L. Li, H.H. Yang, B.B. Li, Poly(dimethylsiloxane)-poly (tetrafluoroethylene)/poly (vinylidenefluoride)
(PDMS-PTFE/PVDF) hollow fiber composite membrane for
pervaporation of chloroform from aqueous solution, Korean J.
Chem. Eng., 31 (2014) 1877–1884.
- G. Zhang, J. Li, N. Wang, H. Fan, R. Zhang, G. Zhang, S. Ji,
Enhanced flux of polydimethylsiloxane membrane for ethanol
permselective pervaporation via incorporation of MIL-53
particles, J. Membr. Sci., 492 (2015) 322–330.
- G. Liu, Z. Jiang, K. Cao, S. Nair, X. Cheng, J. Zhao, H. Gomaa, H.
Wu, F. Pan, Pervaporation performance comparison of hybrid
membranes filled with two-dimensional ZIF-L nanosheets and
zero-dimensional ZIF-8 nanoparticles, J. Membr. Sci., 523 (2017)
185–196.
- G. Wu, M. Jiang, T. Zhang, Z. Jia, Tunable pervaporation
performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol)
mixed matrix membranes, J. Membr. Sci., 507 (2016) 72–80.
- Y. Zhang, N. Wang, C. Zhao, L. Wang, S. Ji, J. Li, Co(HCOO)2-
based hybrid membranes for the pervaporation separation of
aromatic/aliphatic hydrocarbon mixtures, J. Membr. Sci., 520
(2016) 646–656.
- J.G. Varghese, R.S. Karuppannan, M.Y. Kariduraganavar,
Development of hybrid membranes using chitosan and silica
precursors for pervaporation separation of water + isopropanol
mixtures, J. Chem. Eng. Data, 55 (2010) 2084–2092.
- W. Zhang, Y. Ying, J. Ma, X. Guo, H. Huang, D. Liu, C. Zhong,
Mixed matrix membranes incorporated with polydopaminecoated
metal-organic framework for dehydration of ethylene
glycol by pervaporation, J. Membr. Sci., 527 (2017) 8–17.
- D. Hua, Y.K. Ong, Y. Wang, T. Yang, T. Chung, ZIF-90/P84
mixed matrix membranes for pervaporation dehydration of
isopropanol, J. Membr. Sci., 453 (2014) 155–167.
- L.L. Ngoc, Y. Wang, T. Chung, Pebax/POSS mixed matrix
membranes for ethanol recovery from aqueous solutions via
pervaporation, J. Membr. Sci., 379 (2011) 174–183.
- R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance
and selectivity: a preferred way of reporting pervaporation
performance data, J. Membr. Sci., 348 (2010) 346–352.
- X. Feng, R.Y.M. Huang, Estimation of activation energy for
permeation in pervaporation processes, J. Membr. Sci., 118
(1996) 127–131.
- P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental
study of organofunctionalised PDMS membranes for the
pervaporative recovery of phenolic compounds from aqueous
streams, J. Membr. Sci., 190 (2001) 147–157.
- F. Pithan, C. Staudt-Bickel, Crosslinked copolyimide membranes
for phenol recovery from process water by pervaporation,
Chemphyschem, 4 (2003) 967–973.
- P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B.
McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Solutionprocessed,
organophilic membrane derived from a polymer of
intrinsic microporosity, Adv. Mater., 16 (2004) 456–459.